首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a comparative analysis of 5 GHz VLA and 200 ks Chandra ACIS-I image. In the 5 GHz image the familiar jet and much weaker counterjet are seen, which bend as the jet propagates towards the hotspots. Furthermore, where the lobe detected in 5 GHz emission starts to interact with the jet, we see that the jet “threads”. In the 0.2–10 keV X-ray image we do not detect the jet, but do detect a relic of the counterjet.  相似文献   

2.
We discuss results from a decade long program to study the fine-scale structure and the kinematics of relativistic AGN jets with the aim of better understanding the acceleration and collimation of the relativistic plasma forming AGN jets. From the observed distribution of brightness temperature, apparent velocity, flux density, time variability, and apparent luminosity, the intrinsic properties of the jets including Lorentz factor, luminosity, orientation, and brightness temperature are discussed. Special attention is given to the jet in M87, which has been studied over a wide range of wavelengths and which, due to its proximity, is observed with excellent spatial resolution. Most radio jets appear quite linear, but we also observe curved non-linear jets and non-radial motions. Sometimes, different features in a given jet appear to follow the same curved path but there is evidence for ballistic trajectories as well. The data are best fit with a distribution of Lorentz factors extending up to γ∼30 and intrinsic luminosity up to ∼1026 W Hz−1. In general, gamma-ray quasars may have somewhat larger Lorentz factors than non gamma-ray quasars. Initially the observed brightness temperature near the base of the jet extend up to ∼5×1013 K which is well in excess of the inverse Compton limit and corresponds to a large excess of particle energy over magnetic energy. However, more typically, the observed brightness temperatures are ∼2×1011 K, i.e., closer to equipartition.  相似文献   

3.
We present here some initial results from the ongoing XMM-Newton bright serendipitous survey. The survey is aimed at selecting and spectroscopically identifying a large and statistically representative sample of bright (f x ≳ 7× 10−14 c.g.s) serendipitous X-ray sources in the 0.5–4.5 keV energy band (BSS) and a complementary (smaller) sample in the 4.5–7.5 keV energy band (HBSS). The work is partly based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributors directly founded by ESA member states and the USA(NASA) and on observations collected at TNG. The TNG telescope is operated on the island of La Palma by the Centro Galileo Galilei of the INAF in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofísica de Canarias. On behalf of the XMM-Newton Survey Science Center.  相似文献   

4.
We study the particle energy distribution in the cocoon surrounding Cygnus A, using radio images between 151 MHz and 15 GHz and a 200 ks Chandra Advanced CCD Imaging Spectrometer-Imaging (ACIS-I) image. We show that the excess low-frequency emission in the lobe further from the Earth cannot be explained by absorption or excess adiabatic expansion of the lobe or a combination of both. We show that this excess emission is consistent with emission from a relic counterlobe and a relic counterjet that are being re-energized by compression from the current lobe. We detect hints of a relic hotspot at the end of the relic X-ray jet in the more distant lobe. We do not detect relic emission in the lobe nearer to the Earth as expected from light traveltime effects assuming intrinsic symmetry. We determine that the duration of the previous jet activity phase was slightly less than that of the current jet-active phase. Further, we explain some features observed at 5 and 15 GHz as due to the presence of a relic jet.  相似文献   

5.
We present a Chandra image of the quasar, jet, and lobes of PKS 1354+195 (=4C 19.44). The radio jet is 18 arcsec long, and appears to be very straight. The length gives many independent spatial resolution elements in the Chandra image while the straightness implies that the geometrical factors are constant along the jet although their values are uncertain. We also have 4 frequency radio images with half to one arcsecond angular resolution, and use HST and Spitzer data to study the broad band spectral energy distributions. The X-ray and radio spectra are both consistent with a spectrum f ν ν −0.7 for the integrated jet. Using that spectral index, the model of inverse Compton scattering of electrons on the cosmic microwave background (IC/CMB) gives magnetic field strengths and Doppler factors that are relatively constant along the jet. Extended X-ray emission is evident in the direction of the otherwise unseen counter-jet. X-ray emission continues past the radio jet to the South, and is detected within both the southern and northern radio lobes.  相似文献   

6.
We report on centimeter VLA and VLBI observations of the giant, low power radio galaxy 1144+35. On the parsec scale, we see a complex jet component moving away from the center of activity at 2.7h50−1 c. We detect a faint parsec-scale counter-jet and derive a jet velocity of 0.95c and an angle to the line of sight of 25°, consistent with an intrinsically symmetric ejection. These findings lend credence to the claim that even the jets of low-power radio galaxies start out relativistically.  相似文献   

7.
We explore an accretion model for low luminosity AGN (LLAGN) that attributes the low radiative output to a low mass accretion rate, , rather than a low radiative efficiency. In this model, electrons are assumed to drain energy from the ions as a result of collisionless plasma microinstabilities. Consequently, the accreting gas collapses to form a geometrically thin disk at small radii and is able to cool before reaching the black hole. The accretion disk is not a standard disk, however, because the radial disk structure is modified by a magnetic torque which drives a jet and which is primarily responsible for angular momentum transport. We also include relativistic effects. We apply this model to the well known LLAGN M87 and calculate the combined disk-jet steady-state broadband spectrum. A comparison between predicted and observed spectra indicates that M87 may be a maximally spinning black hole accreting at a rate of ∼10−3M yr−1. This is about 6 orders of magnitude below the Eddington rate for the same radiative efficiency. Furthermore, the total jet power inferred by our model is in remarkably good agreement with the value independently deduced from observations of the M87 jet on kiloparsec scales. * This paper has previously been published in Astrophysics and Space Science, vol. 310:3–4.  相似文献   

8.
The fine core-jet structure of the radio galaxy M87 has been investigated in the millimeter-decimeter wave band. A counterjet whose extent is ρ(λ) ≈ 0.036λ pc, where the wavelength λ is expressed in centimeters, has been identified. At a wavelength of 2 cm, the brightness of the jet and counterjet decreases exponentially to the minimally detectable level. However, the decline for the jet slows down from a level of several percent of the peak value. The bipolar jet consists of a highly collimated relativistic plasma flow surrounded by a nonrelativistic low-velocity component. The low-velocity jet flow includes a helical component observable up to a distance of 20 mas or 1.6 pc. The reaction of the flow produces a multimode precession responsible for the helical shape of the relativistic jet with a variable pitch and a curved axis. The helical structures of the jet and counterjet are mirror reflections of each other relative to the ejector. The apparent size of the accretion disk seen edge-on reaches 1.5 mas or 0.12 pc.  相似文献   

9.
We present the results of a comparative study of the intranight optical variability (INOV) characteristics of radio-loud and radioquiet quasars, which involves a systematic intra-night optical monitoring of seven sets of high luminosity AGNs covering the redshift rangez ≃ 0.2 toz ≃ 2.2. The sample, matched in the optical luminosity—redshift(M B—z) plane, consists of seven radio-quiet quasars (RQQs), eight radio lobedominated quasars (LDQs), five radio core-dominated quasars (CDQs) and six BL Lac objects (BLs). Systematic CCD observations, aided by a careful data analysis procedure, have allowed us to detect INOV with amplitudes as low as about 1%. Present observations cover a total of 113 nights (720 hours) with only a single quasar monitored as continuously as possible on a given night. Considering the cases of only unambiguous detections of INOV we have estimated duty cycles (DCs) of 17%, 12%, 20% and 61% for RQQs, LDQs, CDQs, and BLs, respectively. The much lower amplitude and DC of ESfOV shown by RQQs compared to BLs may be understood in terms of their having optical synchrotron jets which are modestly misdirected from us. From our fairly extensive dataset, no general trend of a correlation between the INOV amplitude and the apparent optical brightness of the quasar is noticed. This suggests that the physical mechanisms of INOV and long term optical variability (LTOV) do not have a one-to-one relationship and different factors are involved. Also, the absence of a clear negative correlation between the INOV and LTOV characteristics of blazars of our sample points toward an inconspicuous contribution of accretion disk fluctuations to the observed INOV. The INOV duty cycle of the AGNs observed in this program suggests that INOV is associated predominantly with the highly polarized optical emission components. We also report new VLA imaging of two RQQs (1029 + 329 & 1252 + 020) in our sample which has yielded a 5 GHz detection in one of them (1252 + 020;S 5GHZ ≃ 1 mJy).  相似文献   

10.
We study the spatial orientation of 5 169 galaxies that have radial velocity 3 000 to 5 000 km s−1. The ‘position angle–inclination’ method is used to find the spin vector and the projections of spin vector of the galaxy rotation axes. The spatial isotropic distribution is assumed to examine the non-random effects. For this, we have performed chi-square, Fourier, and auto-correlation tests. We found a random alignment of spin vectors of total galaxies with respect to the equatorial coordinate system. The spin vector projections of total galaxies is found to be oriented tangentially with respect to the equatorial center. The spiral galaxies show a similar orientation as shown by the total sample. Five subsamples of barred spiral (late-type) galaxies show a preferred alignment. However, early-type barred spirals show a random orientation. A weak morphological dependence is noticed in the subsamples of late type barred spirals. A comparison with the previous works and the possible explanation of the results will be presented.  相似文献   

11.
We present an analysis of multi-epoch global VLBI observations of the Compact Symmetric Objects: 2352+495 and 0710+439 at 5 GHz. Analysis of data spread over almost two decades shows strong evidence for an increase in separation of the outer components of both sources at a rate of 0.2h−1c (for q=0.5 and H=100h km s−1Mpc−1). Dividing the overall sizes of the sources by their separation rates implies that these Compact Symmetric Objects have a kinematic age 104 years. These results (and those for other CSOs) strongly argue that CSOs are indeed very young sources that probably evolve into much larger classical doubles.  相似文献   

12.
The gravitational instability of expanding shells evolving in a homogeneous and static medium is discussed. In the low density environment (n = 1 cm-3), the fragmentation starts in shells with diameters of a few 100 pc and fragment masses are in the range of 5 × 103 - 106 M . In the high density environment (n = 105 - 107 cm-3), shells fragment at diameters of pc producing clumps of stellar masses. The mass spectrum in both environments is approximated by a power law dN/dmm -2.3. This is close to the slope of the stellar IMF. To reproduce the observed mass spectrum of clouds (the spectral index close to ∼ -2.0) we have to assume, that the cloud formation time is independent of the cloud size, similarly to the Jeans unstable medium. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
LS 5039 is the only X-ray binary persistently detected at TeV energies by the Cherenkov HESS telescope. It is moreover a γ-ray emitter in the GeV and possibly MeV energy ranges. To understand important aspects of jet physics, like the magnetic field content or particle acceleration, and emission processes, such as synchrotron and inverse Compton (IC), a complete modeling of the multiwavelength data is necessary. LS 5039 has been detected along almost all the electromagnetic spectrum thanks to several radio, infrared, optical and soft X-ray detections. However, hard X-ray detections above 20 keV have been so far elusive and/or doubtful, partly due to source confusion for the poor spatial resolution of hard X-ray instruments. We report here on deep (∼300 ks) serendipitous INTEGRAL hard X-ray observations of LS 5039, coupled with simultaneous VLA radio observations. We obtain a 20–40 keV flux of 1.1±0.3 mCrab (5.9 (±1.6) ×10−12 erg cm−2 s−1), a 40–100 keV upper limit of 1.5 mCrab (9.5×10−12 erg cm−2 s−1), and typical radio flux densities of ∼25 mJy at 5 GHz. These hard X-ray fluxes are significantly lower than previous estimates obtained with BATSE in the same energy range but, in the lower interval, agree with extrapolation of previous RXTE measurements. The INTEGRAL observations also hint to a break in the spectral behavior at hard X-rays. A more sensitive characterization of the hard X-ray spectrum of LS 5039 from 20 to 100 keV could therefore constrain key aspects of the jet physics, like the relativistic particle spectrum and the magnetic field strength. Future multiwavelength observations would allow to establish whether such hard X-ray synchrotron emission is produced by the same population of relativistic electrons as those presumably producing TeV emission through IC.  相似文献   

14.
High-resolution CO maps are an essential tool to search for observational evidence of AGN fueling in galaxy nuclei. While their capabilities will be surpassed by ALMA, current mm-interferometers can already provide relevant information on scales which are critical for the process of angular momentum transfer in fueling the AGN. In this context we present the latest results issued from the NUclei of GAlaxies (NUGA) project, a high-resolution (0.5′′–1′′) CO survey of low luminosity AGNs conducted with the IRAM Plateau de Bure interferometer (PdBI). The use of more specific molecular tracers of dense gas can probe the feedback influence of activity on the chemistry and energy balance in the interstellar medium of nearby galaxies, a prerequisite to understanding how feedback operate at higher redshift galaxies. We discuss the results obtained in an ongoing study devoted to probe the feedback of activity from nearby Seyferts to high-redshift QSO.  相似文献   

15.
We explore an accretion model for low luminosity AGN (LLAGN) that attributes the low radiative output to a low mass accretion rate, , rather than a low radiative efficiency. In this model, electrons are assumed to drain energy from the ions as a result of collisionless plasma microinstabilities. Consequently, the accreting gas collapses to form a geometrically thin disk at small radii and is able to cool before reaching the black hole. The accretion disk is not a standard disk, however, because the radial disk structure is modified by a magnetic torque which drives a jet and which is primarily responsible for angular momentum transport. We also include relativistic effects. We apply this model to the well known LLAGN M87 and calculate the combined disk-jet steady-state broadband spectrum. A comparison between predicted and observed spectra indicates that M87 may be a maximally spinning black hole accreting at a rate of ∼10−3 M  yr−1. This is about 6 orders of magnitude below the Eddington rate for the same radiative efficiency. Furthermore, the total jet power inferred by our model is in remarkably good agreement with the value independently deduced from observations of the M87 jet on kiloparsec scales.  相似文献   

16.
The redshift dependence of spectral index in powerful radio galaxies   总被引:1,自引:0,他引:1  
We present and discuss in this paper the rest frame radio spectra (1–25 GHz) of a sample of fourteen radio galaxies atz >2 from the newly defined MRC/1Jy complete sample of 558 radio sources. These galaxies are among the most powerful radio sources known and range in luminosity from 1028-1028·8 watt Hz-1 at 1 GHz. We find that the median rest frame spectral index of this sample of galaxies atz >2 is significantly steeper than that of a matched luminosity sample of 3CRR galaxies which are at a much lower redshift (0.85 <z < 1.7). This indicates that spectral index correlates primarily with redshift, at least in the luminosity range considered here. The difference between the distributions of rest frame spectral curvatures for the two samples does not appear to be statistically significant. We suggest a new explanation for the steeper spectra of radio galaxies at high redshift involving steeper electron energy spectra at injection. Electron energy spectra are expected to steepen in a first-order Fermi acceleration process, at both non-relativistic and relativistic shock fronts, as the upstream fluid velocity decreases. This may well be the case at high redshifts: the hotter and denser circum-galactic medium at high redshifts could result in slower speeds for the hotspot and the jet material behind it. The smaller sizes of radio sources at higher redshifts provide support to this scenario. Since deceased.  相似文献   

17.
We study the anomalous flux ratio which is observed in some four-image lens systems, where the source lies close to a fold caustic. In this case two of the images are close to the critical curve and their flux ratio should be equal to unity, instead in several cases the observed value differs significantly. The most plausible solution is to invoke the presence of substructures, as for instance predicted by the Cold Dark Matter scenario, located near the two images. In particular, we analyze the two fold lens systems PG1115+080 and B1555+375, for which there are not yet satisfactory models which explain the observed anomalous flux ratios. We add to a smooth lens model, which reproduces well the positions of the images but not the anomalous fluxes, one or two substructures described as singular isothermal spheres. For PG1115+080 we consider a smooth model with the influence of the group of galaxies described by a SIS and a substructure with mass ∼105 M as well as a smooth model with an external shear and one substructure with mass ∼108 M . For B1555+375 either a strong external shear or two substructures with mass ∼107 M reproduce the data quite well.  相似文献   

18.
We have produced 22 VLBI images of the TeV blazar Markarian 421 at 11 epochs, including a Space VLBI observation with the HALCA satellite. We measure the speeds of the three innermost jet components to be 0.64±0.33, 0.48±0.09, and 0.06±0.09c (H0=65 km s−1 Mpc−1). Interpretation of these subluminal speeds in terms of the high Doppler factor demanded by the TeV observations is discussed.  相似文献   

19.
Supermassive black holes, with masses of 106 M to more than 109 M, are among the most spectacular objects in the Universe, and are laboratories for physics in extreme conditions. The primary goal of ARISE (Advanced Radio Interferometry between Space and Earth) is to use the technique of Space VLBI to increase our understanding of black holes and their environments, by imaging the havoc produced in the near vicinity of the black holes by their enormous gravitational fields. The mission will be based on a 25-meter space-borne radio telescope operating at frequencies between 8 and 86 GHz, roughly equivalent to an orbiting element of the Very Long Baseline Array. In an elliptical orbit with an apogee height of 40 000–100 000 km, ARISE will provide a resolution of 15 microarcsecond or better, 5–10 times better than that achievable on the ground. At frequencies of 43 and 86 GHz, the resolution of light weeks to light months in distant quasars will complement the gamma-ray and X-ray observations of high-energy photons, which come from the same regions near the massive black holes. At 22 GHz, ARISE will image the H2O maser disks in active galaxies more than 15 Mpc from Earth, probing accretion physics and giving accurate measurements of black-hole masses. ARISE also will study gravitational lenses at resolutions of tens of microarcseconds, yielding important information on the dark-matter distribution and on the possible existence of compact objects with masses of 103 M to 106 M.  相似文献   

20.
Recent results of the gamma-ray Cherenkov astronomy definitely prove the existence of fast variability in the very high energy (V.H.E.) gamma-ray flux of some active galactic nuclei. The BL Lac PKS 2155-304 for instance showed variations down to a few minutes time scale. From standard light travel time argument, these variations put extremely strong constraints on the size of the TeV emitting zone, which has to be of the order of a few Schwarzschild radius, even for high values of the relativistic Doppler factor of the emitting jets. Such discovery is a challenge for particle acceleration scenarios, which have to imagine efficient acceleration processes at work in a very compact zone. Eventually, the immediate vicinity of the central black hole appears as the most conservative choice for the location of the TeV emission region of active galactic nuclei. In this paper, we propose a two-step mechanism for charged particle acceleration in the magnetosphere of a massive black hole surrounded by an accretion disk. Particles first gain energy by a stochastic process during the accretion phase. It is shown that effective proton acceleration up to energies 1017–1019 eV is possible in a low-luminosity magnetized accretion disk with 2D turbulent motion. The distribution function of energetic protons over energies is a power law function with typical index ≃−1. Here electrons are not very efficiently accelerated because of their drastic losses by synchrotron radiation. In a second time, part of the fast particles escape from the disk and are then entrained by the magnetic structure above the disk, in the rotating black hole magnetosphere. They thus gain additional energy by direct centrifugal mechanism, up to about 1020 eV for the protons and to 10–100 TeV for the electrons when they cross the light cylinder surface. Such energetic particles can further radiate in the TeV spectral range observed by Cherenkov experiments as HESS, MAGIC and VERITAS. Energetic protons can produce γ-radiation in the energy band 1 GeV–100 TeV and above mainly by nuclei collisions with the disk matter, clouds, or ambient low energy photons. Energetic electrons can also reach the required spectral range by inverse Compton emission. However their acceleration is less efficient due to heavy radiation losses, and only gained by centrifugal process during the second phase of the whole mechanism we describe. Our present analysis would therefore favor hadronic scenarios for TeV emission of active galactic nuclei. It is tempting to relate long term variability over years of TeV active galactic nuclei to the first stochastic acceleration phase, which also provides the needed power law particle distributions, while short term variability over minutes is more likely due to perturbations of the second fast direct acceleration phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号