首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper is devoted to Force-Free Electromagnetic Oscillations in a constant magnetic field. A correction is made in the derivation of the basic equation. The paper confirms the predicted spectrum of frequencies, namely n = o (n + 1)1/2;n = 0, 1, 2, .... In addition it is suggested that hybrid frequency n = ( n 2 + H 2 )1/2 should be found in observational data.  相似文献   

2.
A two-component scheme for the generation of type III fundamental radiation is proposed. The first component of the fundamental arises at a plasma level L t because of the Rayleigh scattering of the plasma waves into electromagnetic radiation. The other component arises at L t /2 because of the decay of the first component into plasma waves and the subsequent rescattering of the plasma waves into electromagnetic radiation t 2( t /2). By its properties (location, directivity, polarization) the second component is essentially the same as the second harmonic radiation produced by a stream of fast electrons at L ( t /2). This scheme is used to solve the main problems (localization and directivity of the source, polarization of type III fundamental) of the harmonic theory of type III solar bursts.  相似文献   

3.
The asymptotic properties of a turbulent disk dynamo at large dimensionless numbersR andR characterizing the helicity and the differential rotation are analysed. Three types of generations in the dependence of the relations betweenR andR are found: 2-dynamo and two types of -dynamo. For each of these types the rates of growth are obtained and the forms of solution are pointed out. Boundaries of the disk dynamo approximation are given.  相似文献   

4.
The recent discovery of localised intense magnetic fields in the solar photosphere is one of the major surprises of the past few years. Here we consider the theoretical nature of small amplitude motions in such an intense magnetic flux tube, within which the field strength may reach 2 kG. We give a systematic derivation of the governing expansion equations for a vertical, slender tube, taking into account the dependence upon height of the buoyancy, compressibility and magnetic forces. Several special cases (e.g., the isothermal atmosphere) are considered as well as a more realistic, non-isothermal, solar atmosphere. The expansion procedure is shown to give good results in the special case of a uniform basic-state (in which gravity is negligible) and for which a more exact treatment is possible.The form of both pressure and velocity perturbations within the tube is discussed. The nature of pressure perturbations depends upon a critical transition frequency, p , which in turn is dependent upon depth, field strength, pressure and density in the basic (unperturbed) state of the tube. At a given depth in the tube pressure oscillations are possible only for frequencies greater than p for frequencies below p exponentially decaying (evanescent) pressure modes occur. In a similar fashion the nature of motions within the flux tube depends upon a transition frequency, v . At a given depth within the tube vertically propagating waves are possible only for frequencies greater than v ; for frequencies below v exponentially decaying (evanscent) motions occur.The dependence of both v and p on depth is determined for each of the special cases, and for a realistic solar atmosphere. It is found that the use of an isothermal atmosphere, instead of a more realistic temperature profile, may well give misleading results.For the solar atmosphere it is found that v is zero at about 12 km above optical depth 5000= 1, thereafter rising to a maximum of 0.04 s–1 at some 600 km above 5000 = 1. Below 5000 = 1, in the convection zone, v has a maximum of 0.013 s–1. The transition frequency, p , for the pressure perturbations, is peaked at 0.1 s–1 just below 5000 = 1, falling to a minimum of 0.02 s–1 at about one scale-height deeper in the tube  相似文献   

5.
The method of obtaining the estimates of the maximalt-interval ( , +) on which the solution of theN-body problem exists and which is such that some fixed mutual distance (e. g. 12) exceeds some fixed non-negative lower bound, for allt contained in ( , +), is considered. For given masses and initial data, the increasing sequences of the numbers k , each of which provides the estimate + > k , are constructed. It appears that if + = +, then .  相似文献   

6.
The problem of single Compton scattering is considered and the resulting spectrum, angular distribution and polarization of scattered photons in a general case are obtained. The inverse Compton scattering (ICS) for arbitrary energies of electronsE and photons 0 is investigated in detail. In the case of isotropically-distributed initial photons and relativistic electrons, a strong rise of the scattered spectrum near the upper edge takes place, starting from the values of the characteristic parameterb4E 010 (in units of mc2=1). The energy-loss rate of relativistic electrons due to ICS is calculated. It is shown that the relativistic electrons of the energiesE100 MeV, when scattering on the X-rays with 0~10KeV, transmit the dominant part of their energy to the photons which fall after scattering into the energy range of the electrons (100 MeV).The radiation spectrum of ICS, as well as the energy-losses of relativistic electrons distributed by power-lawE , are calculated. The radiation spectrum reveals the power-law behaviour with the different indices in two limits: the dependence –(1)/2 at 01 gradually changes to –(+1) ln (0) law for 01.  相似文献   

7.
The stability of triangular libration points, when the bigger primary is a source of radiation and the smaller primary is an oblate spheroid. has been investigated in the resonance cases 1 = 22 and 1 = 32. The motion is unstable for all the values of parameters q and A when 1 = 22 and the motion is unstable and stable depending upon the values of the parameters q and A when 1 = 32. Here q is the radiation parameter and A is the oblateness parameter.  相似文献   

8.
We show that the overall densityg() of asymptotic acoustic frequencies of a star obeys a Weyl lawg() D–1, whereD is the dimensionality of the oscillating stellar configuration. For realistic stars with a finite non-zero surface sound speed,D is equal to the actual dimensionality of the star,D=3. For formal models with a vanishing sound velocity at the surface, heuristic arguments lead to a dimensionality parameterD=4.5. The empirical frequencies of Eddington's standard model are found to be consistent with the latter distribution, with reasonable agreement already occurring in the low-frequency range > i 2× fundamental radial mode. We argue that real stars obey this 3.5-power law in some finite frequency interval i << f , f being a very high frequency critically depending on the surface sound velocity, while the full asymptotic law, withD=3, holds for > f .  相似文献   

9.
Nonlinear propagation of strong low-frequency waves, as emitted by pulsars or compact galactic nuclei at their rotation frequencies, in a magnetized plasma is investigated. It is shown that even rather small amplitude waves can drive electrons to ultrarelativistic energies. In the limit when the electrons are ultrarelativistic but the ions are immobile, two types of circularly polarized waves (i.e., ± modes) are excited. In the wave zone of the Crab pulsar, both the electric field ( 3 V m–1) and the wavelength (108 m) of the - mode are larger, by an order of magnitude, than those of the + wave mode. Both ± modes can become modulationally unstable due to their nonlinear interaction with density fluctuations induced by the electrostatic waves.  相似文献   

10.
Resume On étudie la stabilité des solutions périodiques d'un couplage de systèmes linéaires au voisinage de résonances. Les valeurs propres distinctes k de la matrice du système linéaire non perturbé sont telles que kj=iq pour tout couple [k, j]; i=–1, q est un nombre entier, la fréquence de la solution. Une application est faite pour un système à trois degrés de liberté au voisinage de la résonance 221.
Hamiltonian systems in the neighbourhood of an equilibrium solution. II:The stability of periodic solutions
The stability of the periodic solutions for an Hamiltonian system is investigated. Here the distinct eigen values k of the matrix of the unperturbated linear system are such that kj=iq for any [k, j]; i=–1, q is an integer, is the frequency of the periodic solution. An application is made for a system with three degrees of freedom, near the resonance 221.
  相似文献   

11.
We prove that Hill's lunar problem does not possess a second analytic integral of motion, independent of the Hamiltonian. In order to obtain this result, we avoid the usual normalization in which the angular velocity of the rotating reference frame is put equal to unit. We construct an artificial Hamiltonian that includes an arbitrary parameter b and show that this Hamiltonian does not possess an analytic integral of motion for in an open interval around zero. Then, by selecting suitable values of , b and using the invariance of the Hamiltonian under scaling in the units of length and time, we show that the Hamiltonian of Hill's problem does not possess an integral of motion, analytically continued from the integrable two–body problem in a rotating frame.  相似文献   

12.
In the framework of non-linear fluid theory we use a lower hybrid (LH) wave of the form as a pump which interacts with the small fluctuations with the low-frequency vibrations i or =0, where i , is the hydrogen ion-cyclotron (HIC) gyrofrequency. The ponderomotive force generated by the beating of the high-frequency pump wave 0 and the sideband LH waves (±0) produces a non-linear coupling between the high- and low-frequency motions of electrons and ions. Under certain conditions the HIC waves and the zero-frequency waves both become parametrically unstable and start to grow. These excited waves then heat the ions by stochastic acceleration in the transverse direction, thus explaining the formation of ion comics along the auroral field lines. Electrons would be heated in the parallel direction directly by the pump field as well as by low-frequency waves. Thus a single mechanism can explain the existence of ion-cyclotron waves, zero-frequency waves, ion conics, and energetic electrons along the auroral field lines.  相似文献   

13.
For a given family of orbits f(x,y) = c * which can be traced by a material point of unit in an inertial frame it is known that all potentials V(x,y) giving rise to this family satisfy a homogeneous, linear in V(x,y), second order partial differential equation (Bozis,1984). The present paper offers an analogous equation in a synodic system Oxy, rotating with angular velocity . The new equation, which relates the synodic potential function (x,y), = –V(x, y) + % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSqaaSqaai% aaigdaaeaacaaIYaaaaaaa!3780!\[\tfrac{1}{2}\]2(x 2 + y 2) to the given family f(x,y) = c *, is again of the second order in (x,y) but nonlinear.As an application, some simple compatible pairs of functions (x,y) and f(x, y) are found, for appropriate values of , by adequately determining coefficients both in and f.  相似文献   

14.
One-armedglobal oscillations in a non-selfgravitating polytropic disk rotating around a star are investigated. The unperturbed disk is axisymmetric, geometrically thin, and extends infinitely in the radial direction keeping its thickness constant. Perturbations considered are inviscid and adiabatic. It is found that there are one-armed retrograde wave modes which are trapped in an inner region of the disk. The eignefrequency of the lowest order mode is given by K(r s)(z 0/r s)2, wherer s is the radius of the central star,z 0 is the half-thickness of the disk, and K(r s) is the Keplerian angular frequency at the surface of the star.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

15.
We semi-quantitatively calculate the distribution of energy in frequency and angle emitted from a sheet of charges that are moving out relativistically along dipolar magnetic field lines originating near the magnetic polar caps of a rotating neutron star. The angular distribution is conical with the angle of maximum intensity varying with frequency as –1/4 for c 2 c /(R M 2), whereRM is the initial angular radius of the charge sheet at the surface of the star of radiusR. At higher frequencies the width of the angular cone remains constant. The radiation is linearly polarized with the polarization vector in the plane of the line of sight and the magnetic axis. A sheet of uniform charge density and finite thickness has a frequency spectrum that varies from –3/2 to –4 for c and c , respectively. These features are in good general agreement with the observed characteristics of the intensity, pulse shape, and frequency spectrum of the radio pulses from pulsars.Operated by Associated Universities, Inc., under contract with the National Science Foundation.  相似文献   

16.
The scope of the present paper is to provide analytic solutions to the problem of the attitude evolution of a symmetric gyrostat about a fixed point in a central Newtonian force field when the potential function isV (2).We assume that the center of mass and the gyrostatic moment are on the axis of symmetry and that the initial conditions are the following: (t 0)=0, (t 0)=0, (t 0)=(t 0)=0, 1(t 0)=0, 2(t 0)=0 and 3(t 0)= 3 0 .The problem is integrated when the third component of the total angular momentum is different from zero (B 1 0). There now appear equilibrium solutions that did not exist in the caseB 1=0, which can be determined in function of the value ofl 3 r (the third component of the gyrostatic momentum).The possible types of solutions (elliptic, trigonometric, stationary) depend upon the nature of the roots of the functiong(u). The solutions for Euler angles are given in terms of functions of the timet. If we cancel the third component of the gyrostatic momentum (l 3 r =0), the obtained solutions are valid for rigid bodies.  相似文献   

17.
Stepanov  A. V.  Kliem  B.  Krüger  A.  Hildebrandt  J. 《Solar physics》1997,176(1):147-152
Polarization properties of solar and stellar radio emission require, in some cases, emission below the third or fourth coronal electron gyro level, < 3,_c; 4, _c. In the context of plasma radiation, the source parameters should be such that the intermediate magnetic field condition 1 < p 2 / c 2 < 3 is satisfied. Supposing this condition, we investigate the generation of electrostatic waves in a warm background plasma with a high-energy component of magnetically trapped electrons. We invoke the conversion of upper-hybrid waves and Bernstein waves into electromagnetic radiation as being responsible for intense radio emission from a coronal magnetic loop. Moreover, odd-half harmonic emissions in the solar radio spectrum as well as the o-mode polarization at the second harmonic of the plasma frequency are natural consequence of this proposed model.  相似文献   

18.
In this note we derive an exact solution of transfer equation in a plane-parallel semiinfinite atmosphere with albedo >1, by the method of Laplace transform and Wiener-Hopf technique. The emergent intensityI(0, ) is obtained in terms of theH 0-functionH 0() (Das Gupta, 1978) for which some good approximations are given. Intensity at any depth is also obtained.I(0, )/I(0, 0) is plotted in graphs against [0,1], and shows a maximum which drops and shifts towards the origin as increases.  相似文献   

19.
An exact analysis of the effects of mass transfer on the flow of a viscous incompressible fluid past an uniformly accelerated vertical porous and non-porous plate has been presented on taking into account the free convection currents. The results are discussed with the effects of the Grashof number Gr, the modified Grashof number Sc, the Schmidt number Sc, and the suction parametera for Pr (the Prandtl number)=0.71 representating air at 20°C.Nomenclature a suction parameter - C species concentration - C species concentration at the free stream - g acceleration due gravity - Gc modified Grashof number (vg*(C C )/U 0 3 ) - Pr Prandtl number (C p/K) - T temperature of the fluid near the plate - T dimensionless temperature near the plate ((T-T )/(T -T )) - U(t) dimensionless velocity of the plate (U/U 0) - v normal velocity component - v 0 suction/injection velocity - x, y coordinate along and normal to the plate - v kinematic viscosity (/gr) - C p specific heat at constant pressure - C w species concentration at the plate - C non-dimensional species concentration ((C-C )/(C w -C )) - Gr Grashof number (g(T w -T )/U 0 3 ) - D chemical molecular diffusivity - K thermal conductivity - Sc Schmidt number (/D) - T w temperature of the plate - T free stream temperature - t time variable - t dimensionless time (tU 0 2 /) - U 0 reference velocity - u velocity of the fluid near the plate - u non-dimensional velocity (u/U 0) - v dimensionless velocity (v/U 0) - v 0 non-dimensionalv 0 (v 0 /U0)=–at–1/2 - y dimensionless ordinate (yU 0/) - density of the fluid - coefficient of viscosity  相似文献   

20.
An analysis of the effects of Hall current on hydromagnetic free-convective flow through a porous medium bounded by a vertical plate is theoretically investigated when a strong magnetic field is imposed in a direction which is perpendicular to the free stream and makes an angle to the vertical direction. The influence of Hall currents on the flow is studied for various values of .Nomenclature c p specific heat at constant pressure - e electrical charge - E Eckert number - E electrical field intensity - g acceleration due to gravity - G Grashof number - H 0 applied magnetic field - H magnetic field intensity - (j x , j y , j z ) components of current densityJ - J current density - K permeability of porous medium - M magnetic parameter - m Hall parameter - n e electron number density - P Prandtl number - q velocity vector - (T, T w , T ) temperature - t time - (u, v, w) components of the velocity vectorq - U 0 uniform velocity - v 0 suction velocity - (x, y, z) Cartesian coordinates Greek Symbols angle - coefficient of volume expansion - e cyclotron frequency - frequency - dimensionless temperature - thermal conductivity - coefficient of viscosity - magnetic permeability - kinematic viscosity - mass density of fluid - e charge density - electrical conductivity - e electron collision time  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号