首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Basin Research》2018,30(3):448-479
The onshore central Corinth rift contains a syn‐rift succession >3 km thick deposited in 5–15 km‐wide tilt blocks, all now inactive, uplifted and deeply incised. This part of the rift records upward deepening from fluviatile to lake‐margin conditions and finally to sub‐lacustrine turbidite channel and lobe complexes, and deep‐water lacustrine conditions (Lake Corinth) were established over most of the rift by 3.6 Ma. This succession represents the first of two phases of rift development – Rift 1 from 5.0–3.6 to 2.2–1.8 Ma and Rift 2 from 2.2–1.8 Ma to present. Rift 1 developed as a 30 km‐wide zone of distributed normal faulting. The lake was fed by four major N‐ to NE‐flowing antecedent drainages along the southern rift flank. These sourced an axial fluvial system, Gilbert fan deltas and deep lacustrine turbidite channel and lobe complexes. The onset of Rift 2 and abandonment of Rift 1 involved a 30 km northward shift in the locus of rifting. In the west, giant Gilbert deltas built into a deepening lake depocentre in the hanging wall of the newly developing southern border fault system. Footwall and regional uplift progressively destroyed Lake Corinth in the central and eastern parts of the rift, producing a staircase of deltaic and, following drainage reversal, shallow marine terraces descending from >1000 m to present‐day sea level. The growth, linkage and death of normal faults during the two phases of rifting are interpreted to reflect self‐organization and strain localization along co‐linear border faults. In the west, interaction with the Patras rift occurred along the major Patras dextral strike‐slip fault. This led to enhanced migration of fault activity, uplift and incision of some early Rift 2 fan deltas, and opening of the Rion Straits at ca. 400–600 ka. The landscape and stratigraphic evolution of the rift was strongly influenced by regional palaeotopographic variations and local antecedent drainage, both inherited from the Hellenide fold and thrust belt.  相似文献   

2.
The Corinth rift (Greece) is one of the world's most active rifts. The early Plio‐Pleistocene rift is preserved in the northern Peloponnese peninsula, south of the active Corinth rift. Although chronostratigraphic resolution is limited, new structural, stratigraphic and sedimentological data for an area >400 km2 record early rift evolution in three phases separated by distinct episodes of extension rate acceleration and northward fault migration associated with major erosion. Minimum total N–S extension is estimated at 6.4–7.7 km. The earliest asymmetrical, broad rift accommodated slow extension (0.6–1 mm a?1) over >3 Myrs and closed to the west. North‐dipping faults with throws of 1000–2200 m defined narrow blocks (4–7 km) with little footwall relief. A N‐NE flowing antecedent river system infilled significant inherited relief (Lower group). In the earliest Pleistocene, significant fluvial incision coincided with a 15 km northward rift margin migration. Extension rates increased to 2–2.5 mm a?1. The antecedent rivers then built giant Gilbert‐type fan deltas (Middle group) north into a deepening lacustrine/marine basin. N‐dipping, basin margin faults accommodated throws <1500 m. Delta architecture records initiation, growth and death of this fault system over ca. 800 ka. In the Middle Pleistocene, the rift margin again migrated 5 km north. Extension rate increased to 3.4–4.8 mm a?1. This transition may correspond to an unconformity in offshore lithostratigraphy. Middle group deltas were uplifted and incised as new hangingwall deltas built into the Gulf (Upper group). A final increase to present‐day extension rates (11–16 mm a?1) probably occurred in the Holocene. Fault and fault block dimensions did not change significantly with time suggesting control by crustal rheological layering. Extension rate acceleration may be due to strain softening or to regional tectonic factors.  相似文献   

3.
The style of extension and strain distribution during the early stages of intra-continental rifting is important for understanding rift-margin development and can provide constraints for lithospheric deformation mechanisms. The Corinth rift in central Greece is one of the few rifts to have experienced a short extensional history without subsequent overprinting. We synthesise existing seismic reflection data throughout the active offshore Gulf of Corinth Basin to investigate fault activity history and the spatio-temporal evolution of the basin, producing for the first time basement depth and syn-rift sediment isopachs throughout the offshore rift. A major basin-wide unconformity surface with an age estimated from sea-level cycles at ca . 0.4 Ma separates distinct seismic stratigraphic units. Assuming that sedimentation rates are on average consistent, the present rift formed at 1–2 Ma, with no clear evidence for along-strike propagation of the rift axis. The rift has undergone major changes in relative fault activity and basin geometry during its short history. The basement depth is greatest in the central rift (maximum ∼3 km) and decreases to the east and west. In detail however, two separated depocentres 20–50 km long were created controlled by N- and S-dipping faults before 0.4 Ma, while since ca . 0.4 Ma a single depocentre (80 km long) has been controlled by several connected N-dipping faults, with maximum subsidence focused between the two older depocentres. Thus isolated but nearby faults can persist for timescales ca . 1 Ma and form major basins before becoming linked. There is a general evolution towards a dominance of N-dipping faults; however, in the western Gulf strain is distributed across several active N- and S-dipping faults throughout rift history, producing a more complex basin geometry.  相似文献   

4.
Models to explain alluvial system development in rift settings commonly depict fans that are sourced directly from catchments formed in newly uplifted footwalls, which leads to the development of steep-sided talus-cone fans in the actively subsiding basin depocentre. The impact of basin evolution on antecedent drainage networks orientated close to perpendicular to a rift axis, and flowing over the developing hangingwall dip slope, remains relatively poorly understood. The aim of this study is to better understand the responses to rift margin uplift and subsequent intrabasinal fault development in determining sedimentation patterns in alluvial deposits of a major antecedent drainage system. Field-acquired data from a coarse-grained alluvial syn-rift succession in the western Gulf of Corinth, Greece (sedimentological logging and mapping) has allowed analysis of the spatial distribution of facies associations, stratigraphic architectural elements and patterns of palaeoflow. During the earliest rifting phase, newly uplifted footwalls redirected a previously established fluvial system with predominantly southward drainage. Footwall uplift on the southern basin margin at an initially relatively slow rate led to the development of an overfilled basin, within which an alluvial fan prograded to the south-west, south and south-east over a hangingwall dip slope. Deposition of the alluvial system sourced from the north coincided with the establishment of small-scale alluvial fans sourced from the newly uplifted footwall in the south. Deposits of non-cohesive debris flows close to the proposed hangingwall fan apex pass gradationally downstream into predominantly bedload conglomerate deposits indicative of sedimentation via hyperconcentrated flows laden with sand- and silt-grade sediment. Subsequent normal faulting in the hangingwall resulted in the establishment of further barriers to stream drainage, blocking flow routes to the south. This culminated in the termination of sediment supply to the basin depocentre from the north, and the onset of underfilled basin conditions as signified by an associated lacustrine transgression. The evolution of the fluvial system described in this study records transitions between three possible end-member types of interaction between active rifting and antecedent drainage systems: (a) erosion through an uplifted footwall, (b) drainage diversion away from an uplifted footwall and (c) deposition over the hangingwall dip slope. The orientation of antecedent drainage pathways at a high angle to the trend of a developing rift axis, replete with intrabasinal faulting, exerts a primary control on the timing and location of development of overfilled and underfilled basin states in evolving depocentres.  相似文献   

5.
6.
Our current understanding on sedimentary deep-water environments is mainly built of information obtained from tectonic settings such as passive margins and foreland basins. More observations from extensional settings are particularly needed in order to better constrain the role of active tectonics in controlling sediment pathways, depositional style and stratigraphic stacking patterns. This study focuses on the evolution of a Plio-Pleistocene deep-water sedimentary system (Rethi-Dendro Formation) and its relation to structural activity in the Amphithea fault block in the Corinth Rift, Greece. The Corinth Rift is an active extensional basin in the early stages of rift evolution, providing perfect opportunities for the study of early deep-water syn-rift deposits that are usually eroded from the rift shoulders due to erosion in mature basins like the Red Sea, North Sea and the Atlantic rifted margin. The depocentre is located at the exit of a structurally controlled sediment fairway, approximately 15 km from its main sediment source and 12 km basinwards from the basin margin coastline. Fieldwork, augmented by digital outcrop techniques (LiDAR and photogrammetry) and clast-count compositional analysis allowed identification of 16 stratigraphic units that are grouped into six types of depositional elements: A—mudstone-dominated sheets, B—conglomerate-dominated lobes, C—conglomerate channel belts and sandstone sheets, D—sandstone channel belts, E—sandstone-dominated broad shallow lobes, F—sandstone-dominated sheets with broad shallow channels. The formation represents an axial system sourced by a hinterland-fed Mavro delta, with minor contributions from a transverse system of conglomerate-dominated lobes sourced from intrabasinal highs. The results of clast compositional analysis enable precise attribution for the different sediment sources to the deep-water system and their link to other stratigraphic units in the area. Structures in the Amphithea fault block played a major role in controlling the location and orientation of sedimentary systems by modifying basin-floor gradients due to a combination of hangingwall tilt, displacement of faults internal to the depocentre and folding on top of blind growing faults. Fault activity also promoted large-scale subaqueous landslides and eventual uplift of the whole fault block.  相似文献   

7.
A new subtype of Gilbert-type fan deltas, ‘the trapezoidal fan delta’, characterized by the absence of bottomset deposits, is recognized in the south-western active margins of the Corinth rift in central Greece. They are formed adjacent to master extensional listric faults and developed by progradation either onto a subaqueous basin escarpment or across a subaerial platform where alluvial fans have accumulated. Simultaneously with master fault activity, displacements on counter faults along intrabasinal basement highs produced fan delta foreset deposits. Furthermore, footwall imbrication and uplift along the listric faults, as well as transfer fault displacement, have strongly influenced the pattern of fan delta sedimentation.  相似文献   

8.
Zones of distributed faulting with narrow (2–3 km) across‐strike spacing form a common structural style within rifts, especially in accommodation zones, and contrast with crustal‐scale half‐grabens, where strain is localised on normal faults spaced 10–30 km apart. These contrasting styles are likely to have a significant impact on geomorphic development, sediment routing and the stratigraphic record. Perachora Peninsula, in the eastern part of the active Corinth Rift, Greece, is one such zone of distributed faulting. We analyse the topography and drainage networks developed around these closely spaced normal faults, and compare our results with published studies from crustal‐scale half‐grabens. We subdivide the Perachora Peninsula into a series of drainage domains and examine the tectono‐geomorphic evolution of three domains that best represent the range of topographic characteristics, base levels and drainage network styles. We interpret that the perched, endorheic nature of the Asprokampos domain developed due to uplift and backtilt on offshore faults. The Pisia West domain, which drains the valley between the Skinos and Pisia Faults and responds to a perched base level, is interpreted to have experienced a complex base‐level history with episodic connections to sea level. The Skinos Relay domain drains to sea level, lying on the relay ramp between the closely spaced Kamarissa and Skinos Faults. Here, interaction between the displacement fields associated with each of the closely spaced faults controls the rate and style of landscape evolution. In contrast to crustal‐scale half‐grabens, observations from Perachora Peninsula suggest that zones of distributed faulting may be characterised by: (i) perched, internal sediment sinks at different elevations, responding to multiple base levels; (ii) minimal fault‐transverse sediment transport; (iii) interaction of uplift and subsidence fields associated with closely spaced faults, which modulate the rate and style of landscape response; and (iv) complex erosion and sedimentation histories, the evidence for which may have low preservation potential in the stratigraphic record.  相似文献   

9.
Deep-water syn-rift systems develop in partially- or transiently-linked depocentres to form complicated depositional architectures, which are characterised by short transport distances, coarse grain sizes and a wide range of sedimentary processes. Exhumed systems that can help to constrain the tectono-stratigraphic evolution of such systems are rare or complicated by inversion tectonics. Here, we document a mid-Pleistocene deep-water syn-rift system fed by Gilbert-type fan deltas in the hangingwall of a rift margin fault bounding the West Xylokastro Horst block, on the southern margin of the Gulf of Corinth, Greece. Structural and stratigraphic mapping combined with digital outcrop models permit observations along this syn-rift depositional system from hinterland source to deep-water sink. The West Xylokastro Fault hangingwall is filled by two distinct sediment systems; an axial system fed by coarse-grained sediment gravity flows derived from fault-tip Gilbert-type fan deltas and a lateral system dominated by mass transport deposits fed from an evolving fault-scarp apron. Abrupt changes in stratigraphic architecture across the axial system are interpreted to record changes in relative base level, sediment supply and tectonics. Locally, depositional topography and intra-basinal structures controlled sediment dispersal patterns, from bed-scale infilling of local rugose topography above mass transport complexes, to basin-scale confinement from the fault scarp apron. These acted to generate a temporally and spatially variable, heterogeneous stratigraphic architecture throughout the basin-fill. The transition of the locus of sedimentation from a rift margin to a fault terrace through the syn-sedimentary growth of a basinward fault produced regressive surfaces updip, which manifest themselves as channels in the deep-water realm and acted to prograde the system. We present a new conceptual model that recognises coeval axial and transverse systems based on the stratigraphic architecture around the West Xylokastro fault block that emphasizes the lateral and vertical heterogeneity of rift basin-fills with multiple entry points.  相似文献   

10.
Summary. A preliminary study of the aftershocks of three earthquakes that occurred near to Corinth (Greece) in 1981 is combined with observations of the morphology and faulting to understand the evolution of the Eastern Gulf of Corinth. The well located aftershocks form a zone 60km long and 20km wide. They do not lie on the main fault planes and are mostly located between the north-dipping faulting on which the first two earthquakes occurred and the south-dipping faulting associated with the third event. A cluster of aftershocks also lies in the footwall of the eastern end of the south-dipping fault of the third event.
Morphologically, it is observed that in the evolution of the Eastern Gulf of Corinth, antithetic faulting apparently predates the appearance of the main faulting at the surface. This evolution can be explained by motion on a deep seated, shallow angle, aseismic normal fault. A model based on such a fault also accounts for the aftershock distribution of the 1981 earthquakes.  相似文献   

11.
The volume and grain-size of sediment supplied from catchments fundamentally control basin stratigraphy. Despite their importance, few studies have constrained sediment budgets and grain-size exported into an active rift at the basin scale. Here, we used the Corinth Rift as a natural laboratory to quantify the controls on sediment export within an active rift. In the field, we measured the hydraulic geometries, surface grain-sizes of channel bars and full-weighted grain-size distributions of river sediment at the mouths of 47 catchments draining the rift (constituting 83% of the areal extent). Results show that the sediment grain-size increases westward along the southern coast of the Gulf of Corinth, with the coarse-fraction grain-sizes (84th percentile of weighted grain-size distribution) ranging from approximately 19 to 91 mm. We find that the median and coarse-fraction of the sieved grain-size distribution are primarily controlled by bedrock lithology, with late Quaternary uplift rates exerting a secondary control. Our results indicate that grain-size export is primarily controlled by the input grain-size within the catchment and subsequent abrasion during fluvial transport, both quantities that are sensitive to catchment lithology. We also demonstrate that the median and coarse-fraction of the grain-size distribution are predominantly transported in bedload; however, typical sand-grade particles are transported as suspended load at bankfull conditions, suggesting disparate source-to-sink transit timescales for sand and gravel. Finally, we derive both a full Holocene sediment budget and a grain-size-specific bedload discharged into the Gulf of Corinth using the grain-size measurements and previously published estimates of sediment fluxes and volumes. Results show that the bedload sediment budget is primarily comprised (~79%) of pebble to cobble grade (0.475–16 cm). Our results suggest that the grain-size of sediment export at the rift scale is particularly sensitive to catchment lithology and fluvial mophodynamics, which complicates our ability to make direct inferences of tectonic and palaeoenvironmental forcing from local stratigraphic characteristics.  相似文献   

12.
13.
Swath bathymetry, single‐channel seismic profiling, gravity and box coring, 210Pb down‐core radiochemical analyses and sequence stratigraphic analysis in the Gulf of Alkyonides yielded new data on the evolution of the easternmost part of the Gulf of Corinth. Three fault segments, the South Strava, West Alkyonides and East Alkyonides faults, dipping 45, 30 and 45°, respectively, northwards, form the southern tectonic boundary of the Alkyonides Basin. Two 45° southwards dipping segments, the Domvrena and Germeno Faults, form the northern tectonic margin. The Alkyonides Basin architecture is the result of a complex interaction between fault dynamics and the effects of changes in climate and sea/lake level. Chrono‐stratigraphic interpretation of the seismic stratigraphy through correlation of the successive seismic packages with lowstands and highstands of the Late Quaternary indicates that the evolution of the basin started 0.40–0.45 Ma BP and can be divided in two stages. Subsidence of the basin floor during the early stage was uniform across the basin and the mean sedimentation rate was 1.0 m kyear?1. Vertical slip acceleration on the southern tectonic margin since 0.13 Ma BP resulted in the present asymmetric character of the basin. Subsidence concentrated close to the southern margin and sedimentation rate increased to 1.4 m kyear?1 in the newly formed depocentre of the basin. Actual (last 100 year) sedimentation rates were calculated to >2 mm year?1, but are significantly influenced by the presence of episodic gravity flow deposits. Total vertical displacement of 1.1 km is estimated between the subsiding Alkyonides Basin floor and the uplifting Megara Basin since the onset of basin subsidence at a mean rate of 2.4–2.75 m kyear?1, recorded on the East Alkyonides Fault. Gravity coring in the Strava Graben and in the lower northern margin of Alkyonides Basin proved the presence of whitish to olive grey laminated mud below thin marine sediments. Aragonite crystals and absence of the marine coccolithophora Emiliania huxleyi indicate sedimentation in lacustrine environment during the last lowstand glacial interval.  相似文献   

14.
15.
In this paper, we apply current geological knowledge on faulting processes to digital processing of Digital Elevation Models (DEM) in order to pinpoint locations of active faults. The analysis is based on semiautomatic interpretation of 20- and 60-m DEM and their products (slope, shaded relief). In Northern–Eastern Attica, five normal fault segments were recognized on the 20-m DEM. All faults strike WNW–ESE. The faults are from west to east: Thriassion (THFS), Fili (FIFS), Afidnai (AFFS), Avlon (AVFS), and Pendeli (PEFS) and range in length from 10 to 20 km. All of them show geomorphic evidence for recent activity such as prominent range-front escarpments, V-shaped valleys, triangular facets, and tilted footwall areas. However, escarpment morphometry and footwall geometry reveal systematic differences between the “external” segments (PEFS, THFS, and AVFS) and the “internal” segments (AFFS and FIFS), which may be due to mechanical interaction among segments and/or preexisting topography. In addition, transects across all five escarpments show mean scarp slope angles of 22.1°±0.7° for both carbonate and metamorphic bedrock. The slope angle equation for the external segments shows asymptotic behaviour with increasing height. We make an empirical suggestion that slope angle is a function of the long-term fault slip rate which ranges between 0.13 and 0.3 mm/yr. The identified faults may rupture up to magnitude 6.4–6.6 earthquakes. The analysis of the 60-m DEM shows a difference in fault patterns between Western and Northern Attica, which is related to crustal rheology variations.  相似文献   

16.
The impact of a pre‐existing rift fabric on normal fault array evolution during a subsequent phase of lithospheric extension is investigated using 2‐D and 3‐D seismic reflection, and borehole data from the northern Horda Platform, Norwegian North Sea. Two fault populations are developed: (i) a population comprising relatively tall (>2 km), N‐S‐striking faults, which have >1.5 km of throw. These faults are up to 60 km long, penetrate down into crystalline basement and bound the eastern margins of 6–15 km wide half‐graben, which contain >3 km of pre‐Jurassic, likely Permo–Triassic, but possibly Devonian syn‐rift strata; and (ii) a population comprising vertically restricted (<1 km), NW‐SE‐striking faults, which are more closely spaced (0.5–5 km), have lower displacements (30–100 m) and not as long (2–10 km) as those in the N–S‐striking population. The NW‐SE‐striking population typically occurs between the N‐S‐striking population, and may terminate against or cross‐cut the larger structures. NW–SE‐striking faults do not bound pre‐Jurassic half‐graben and are largely restricted to the Jurassic‐to‐Cretaceous succession. Seismic‐stratigraphic observations, and the stratigraphic position of the fault tips in both fault populations, allow us to reconstruct the Late Jurassic‐to‐Early Cretaceous growth history of the northern Horda Platform fault array. We suggest the large, N‐S‐striking population was active during the Permo–Triassic and possibly earlier (Devonian?), before becoming inactive and buried during the Early and Middle Jurassic. After a period of relative tectonic quiescence, the N‐S‐striking, pre‐Jurassic fault population propagated through the Early‐Middle Jurassic cover and individual fault systems rapidly (within <10 Ma) established their maximum length in response to Late Jurassic extension. These fault systems became the dominant structures in the newly formed fault array and defined the locations of the main, Late Jurassic‐to‐Early Cretaceous, syn‐rift depocentres. Late Jurassic extension was also accommodated by broadly synchronous growth of the NW‐SE‐striking fault population; the eventual death of this population occurred in response to the localization of strain onto the N–S‐striking fault population. Our study demonstrates that the inheritance of a pre‐existing rift fabric can influence the geometry and growth of individual fault systems and the fault array as a whole. On the basis of observations made in this study, we present a conceptual model that highlights the influence of a pre‐existing rift fabric on fault array evolution in polyphase rifts.  相似文献   

17.
Quantification of allogenic controls in rift basin‐fills requires analysis of multiple depositional systems because of marked along‐strike changes in depositional architecture. Here, we compare two coeval Early‐Middle Pleistocene syn‐rift fan deltas that sit 6 km apart in the hangingwall of the Pirgaki‐Mamoussia Fault, along the southern margin of the Gulf of Corinth, Greece. The Selinous fan delta is located near the fault tip and the Kerinitis fan delta towards the fault centre. Selinous and Kerinitis have comparable overall aggradational stacking patterns. Selinous comprises 15 cyclic stratal units (ca. 25 m thick), whereas at Kerinitis 11 (ca. 60 m thick) are present. Eight facies associations are identified. Fluvial and shallow water facies dominate the major stratal units in the topset region, with shelfal fine‐grained facies constituting ca. 2 m thick intervals between major topset units and thick conglomeratic foresets building down‐dip. It is possible to quantify delta build times (Selinous: 615 kyr; Kerinitis: >450 kyr) and average subsidence and equivalent sedimentation rates (Selinous: 0.65 m/kyr; Kerinitis: >1.77 m/kyr). The presence of sequence boundaries at Selinous, but their absence at Kerinitis, enables sensitivity analysis of the most uncertain variables using a numerical model, ‘Syn‐Strat’, supported by an independent unit thickness extrapolation method. Our study has three broad outcomes: (a) the first estimate of lake level change amplitude in Lake Corinth for the Early‐Middle Pleistocene (10–15 m), which can aid regional palaeoclimate studies and inform broader climate‐system models; (b) demonstration of two complementary methods to quantify faulting and base level signals in the stratigraphic record—forward modelling with Syn‐Strat and a unit thickness extrapolation—which can be applied to other rift basin‐fills; and (c) a quantitative approach to the analysis of stacking patterns and key surfaces that could be applied to stratigraphic pinch‐out assessment and cross‐hole correlations in reservoir analysis.  相似文献   

18.
This paper presents data on the sedimentation processes and basin-fill architecture in an incipient submarine intrabasinal graben, the Strava graben. The Strava graben is a relatively small intrabasinal structure about 15 km long and 3 km wide formed some time during the late Pleistocene. It connects the Alkyonidhes basin to the Corinth basin, in the Aegean back arc, which is characterized by fast rates of extension and intensive seismicity. Analysis and interpretation of high-resolution 3.5-kHz and sparker profiles together with sonar imagery have shown that gravity-driven sediment transport, triggered by earthquakes, is the dominant sedimentation process and that this sediment forms the vast bulk of the basin-fill. The sediment deposited in the Strava graben is derived from the uplifted footwall blocks bounding the graben and is transported to the basin initially as liquefied flows, some of which may progressively evolve to turbidity flows. The deposits of the liquefied flows have accumulated in the graben floor as aggradational stacks, consisting of sheet-like, low-relief lobes, forming base of slope aprons that are fed by multiple sediment sources along active faults. In addition to the lateral (footwall-derived) sediment transport there is also a gravity-controlled axial transport. The axial transport has formed a depositional system in the down-dip termination of the Strava graben, where it enters the Corinth basin. The axial depositional system grows outwards and upwards and consists of liquefied flow depositional lobes which are separated by turbidites. The sedimentation transport processes and basin infilling style described for the Strava graben can be used as a predictive model for the early synrift stage of ancient submarine intrabasinal structures, in which the major sediment source area is the bounding fault scarps and not drainage basins in the hinterland.  相似文献   

19.
20.
《Geomorphology》2006,73(1-2):16-32
Well-constrained case studies of transient landscape response to external forcing are needed to improve our understanding of erosion processes in tectonically active mountain belts. The Peninsular Ranges portion of the San Jacinto fault zone (SJFZ) is an excellent location for such a study because it displays pronounced geomorphic disequilibrium resulting from initiation of a major strike-slip fault in the past 1.0 to 2.5 million years. We recognize two geomorphic domains in this region: (1) a relict low-relief upland domain consisting of broad flat valleys and low-gradient streams and (2) very steep, rough topography with deeply incised canyons and retreating erosional knickpoints. Pleistocene sediments exposed along and near the SJFZ include fluvial conglomerate, sandstone, and mudstone, with weak paleosols and west- to NW-directed paleocurrents. These sediments accumulated in a low-gradient stream system (represented by domain 1) during an early phase of slip in the SJFZ, prior to the modern phase of erosion and degradation (domain 2). Late Pliocene or early Pleistocene initiation of the SJFZ triggered a wave of headward erosion and stream capture that is still migrating NW along the fault zone. Using the total distance that capture points have migrated along the fault zone and a range of possible ages for fault initiation, the rate of knickpoint retreat is estimated at ∼ 12 to 44 km/my.To explore the signal of transient geomorphic response to fault initiation, we analyzed 23 tributaries along an ∼ 20-km portion of the main fault valley within domain 2. The analysis reveals three zones with distinctive morphologies: (1) strongly convex longitudinal profiles in the NW, (2) a large (ca. 5–6 km2) landslide in the central zone, and (3) concave tributaries in the SE with profile complexity decreasing and catchment area increasing from NW to SE. The distribution of these zones suggests close spatial and temporal association of active fault slip, bedrock incision, deep-seated landslides, and erosional modification. The fundamental driving force behind these processes is profound geomorphic disequilibrium resulting from initiation of the SJFZ. We suggest that landslides may have played a significant role in shaping the morphology of this fault zone, and that the influence of landslides may be underestimated in areas where characteristic landforms and deposits are obscured by later erosion and faulting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号