首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of lake sediments on Sejerø in southern Kattegat indicate a treeless arctic environment with the dwarf shrub Salix polaris, herbs and wetland mosses. The mean July temperature was around 8 to 10°C. An AMS radiocarbon age determination of a Salix twig yielded an age of around 36 000 14C yr BP, which is in accordance with previous conventional dating of bulk sediment samples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Olahola is a wavecut cave positioned well above the postglacial marine limit. The sediment sequence in the cave can be litho- and magnetostratigraphically correlated with the sequence in the Skjonghelleren cave, 36 km northeast of this locality. Three boulder formations in Olahola represent three ice-free periods (including the Holocene) and two formations of laminated clay represent periods of ice-cover. Paleomagnetic excursions in the laminated clays have been correlated with the Lake Mungo/Mono Lake excursion (28 ka), and with the Laschamp excursion (43 ka), but the resolution of these events is much better in the caves than anywhere else. The paleomagnetic records from Skjonghelleren and Olahola suggest that during the Laschamp excursion at least 0.75–1 m of sediment accumulated in Skjonghelleren before sedimentation started in Olahola, indicating also an earlier ice coverage at Skjonghelleren.  相似文献   

3.
Wohlfarth, B., Alexanderson, H., Ampel, L., Bennike, O., Engels, S., Johnsen, T., Lundqvist, J. & Reimer, P. 2010: Pilgrimstad revisited – a multi‐proxy reconstruction of Early/Middle Weichselian climate and environment at a key site in central Sweden. Boreas, 10.1111/j.1502‐3885.2010.00192.x. ISSN 0300‐9483. The site Pilgrimstad in central Sweden has often been cited as a key locality for discussions of ice‐free/ice‐covered intervals during the Early and Middle Weichselian. Multi‐proxy investigations of a recently excavated section at Pilgrimstad now provide a revised picture of the climatic and environmental development between ~80 and 36 ka ago. The combination of sedimentology, geochemistry, OSL and 14C dating, and macrofossil, siliceous microfossil and chironomid analyses shows: (i) a lower succession of glaciofluvial/fluvial, lacustrine and glaciolacustrine sediments; (ii) an upper lacustrine sediment sequence; and (iii) Last Glacial Maximum till cover. Microfossils in the upper lacustrine sediments are initially characteristic for oligo‐ to mesotrophic lakes, and macrofossils indicate arctic/sub‐arctic environments and mean July temperatures >8 °C. These conditions were, however, followed by a return to a low‐nutrient lake and a cold and dry climate. The sequence contains several hiatuses, as shown by the often sharp contacts between individual units, which suggests that ice‐free intervals alternated with possible ice advances during certain parts of the Early and Middle Weichselian.  相似文献   

4.
The Quaternary sedimentary succession in Vendsyssel, northern Denmark, contains a unique, high‐resolution record of the last interglacial and glacial periods. There is still much debate, however, about the timing and ice extent in this southwestern part of the Scandinavian Ice Sheet, particularly during the Middle Weichselian. In this study, a detailed lithostratigraphical subdivision is established for the Late Saalian to Middle Weichselian Skærumhede Group on the basis of numerous, up to 250 m deep, boreholes in Vendsyssel. The sediments mainly consist of marine clays, glaciolacustrine sediments and tills, and the total thickness of the Skærumhede Group is up to 140 m. Marine intervals have been used as stratigraphical marker units to separate the formations indicative of ice‐sheet activity in Vendsyssel, and the timing of the events has been constrained by a large number of optically stimulated luminescence (OSL) and radiocarbon ages. The Skærumhede Group is subdivided into seven formations and two members, reflecting shifts between marine and terrestrial sedimentation caused by fluctuations of the Scandinavian Ice Sheet and changes in sea level. The lowermost Skærumhede Till Formation was deposited directly on top of the bedrock during the Warthe advance c. 160–140 kyr BP. Above, there are fine‐grained marine sediments, subdivided into the Lower, Middle and Upper Skærumhede Clay Formations. The marine formations are separated by the Brønderslev Formation related to the Sundsøre ice advance from the north c. 65–60 kyr BP, and the Åsted Formation, deposited during the Ristinge advance from an east–southeastern direction c. 55–50 kyr BP. The uppermost formation in the group is the Lønstrup Klint Formation, which is an upwards‐coarsening sequence of mainly glaciolacustrine sediments deposited prior to the Kattegat advance c. 30–29 kyr BP. The new evidence from Vendsyssel has shown that the Skærumhede Group covers a large area, and that it can be used as a regional stratigraphical marker horizon. Furthermore, it contributes to a better understanding of the timing and extent of glacial events during the Late Saalian to Middle Weichselian in southwest Scandinavia.  相似文献   

5.
Mineral magnetic and carbon analyses of a continuous varved lake sediment sequence in west-central Sweden (Lake Mötterudstjärnet) complement similar palaeoclimate proxies obtained from two varved lake sediment sequences in northern Sweden and one in central Finland. The varve chronology is supported by tephrochronology, palaeomagnetic secular variations and 14C AMS dating of terrestrial macrofossils. We apply a simple model in which the transport and deposition of catchment mineral matter reflect the amount of winter snow accumulation, spring snow-melt and stream discharge. Our data show that winter snow accumulation was generally enhanced in Sweden between 8100 and 7750 cal. yr BP. If dating errors are taken into account, the 350-year period of increased erosion is the geomorphic response to a multi-centennial scale climatic cooling that occurred some time between 8500 and 7500 cal. yr BP. The most significant erosion event in central Sweden was centred at 8050 cal. yr BP. It lasted 150 years (between 8100 and 7950 cal. yr BP) and is equivalent to the most extreme Holocene climate anomaly in the northern hemisphere, known as the 8 ka or 8200 cal. yr BP climate event. Our high-resolution paramagnetic susceptibility and ferrimagnetic grain-size parameters suggest that snowpack accumulation increased most significantly in northern Sweden between 7900 and 7750 cal. yr BP. We suggest that this north–south difference was a response to the re-establishment of moisture-laden westerly air masses, as meridional Atlantic overturning circulation was re-established at the beginning of the Holocene thermal maximum.  相似文献   

6.
Sedimentological analysis of the Weichselian deposits exposed in the coastal cliff section at Lønstrup Klint, northern Jutland, Denmark, demonstrates the presence of four sedimentary units comprising fine-grained lacustrine and fluvial deposits of the latest Middle Wcichselian. The Lønstrup Klint section also shows an interplay between glaciotectonics and sedimentation. The two lower sedimentary units are separated by an erosional unconformity of pretectonic origin, whereas the upper two units are syntectonic. The glaciotectonic processes reflect the Late Weichselian expansion of the Scandinavian ice cap into northern Jutland. The sedimentary structures indicate high rates of deposition. The area underwent dramatic palaeogeographic changes from deep lake to proglacial fluvial plain in a time-span of a few thousand years.  相似文献   

7.
The Jæren area in southwestern Norway has experienced great changes in sea‐levels and sedimentary environments during the Weichselian, and some of these changes are recorded at Foss‐Eikeland. Four diamictons interbedded with glaciomarine and glaciofluvial sediments are exposed in a large gravel pit situated above the post‐glacial marine limit. The interpretation of these sediments has implications for the history of both the inland ice and the Norwegian Channel Ice Stream. During a Middle Weichselian interstadial, a large glaciofluvial delta prograded into a shallow marine environment along the coast of Jæren. A minor glacial advance deposited a gravelly diamicton, and a glaciomarine diamicton was deposited during a following marine transgression. This subsequently was reworked by grounded ice, forming a well‐defined boulder pavement. The boulder pavement is followed by glaciomarine clay with a lower, laminated part and an upper part of sandy clay. The laminated clay probably was deposited under sea‐ice, whereas more open glaciomarine conditions prevailed during deposition of the upper part. The clay is intersected by clastic dykes protruding from the overlying, late Weichselian till. Preconsolidation values from the marine clay suggest an ice thickness of at least 500 m during the last glacial phase. The large variations in sea‐level probably are a combined effect of eustasy and glacio‐isostatic changes caused by an inland ice sheet and an ice stream in the Norwegian Channel. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Excavations were made in the colluvial deposits of seven kettleholes in a sandy esker at Kuttanen, northwestern Finnish Lapland. The Holocene history of forest fires and the associated colluvial activity initiated on the slopes of the kettleholes were reconstructed based on 131 radiocarbon dates from charcoal layers. These dates were supplemented by luminescence dating of colluvial sand layers. The first forest fires occurred ~9000 years ago following the immigration of Pinus sylvestris about 1000 years after deglaciation. Evidence of forest fires and colluvial activity increased with the density of the pine forest, reaching a maximum during the Holocene Thermal Maximum between ~8000 and 4000 cal. a BP, declining thereafter to a minimum in the last ~500 years. This multimillennial‐scale pattern corresponds with forest fires being triggered by lightning strikes during the warmest summer weather of the Holocene, which also produced heavy rain and slope wash from convective storms. The 50 forest fires identified over the Holocene indicate a long cycle in fire frequency of 1 in ~200 years, which appears to reflect the average successional recovery time of the forest. Complex interactions amongst vegetation, fire and climate may account for little or no association between 23 centennial‐ to millennial‐scale clusters of forest fires/colluvial events and Holocene temperature or precipitation anomalies. Buried podzols indicate five phases of soil formation and hence low levels of landscape disturbance. The kettleholes and their colluvial deposits therefore provide a unique geo‐ecological archive that has led to new insights into the geo‐ecological interactions that affect environmental change in the sub‐arctic landscape.  相似文献   

9.
Heikkilä, M. & Seppä, H. 2010: Holocene climate dynamics in Latvia, eastern Baltic region: a pollen‐based summer temperature reconstruction and regional comparison. Boreas, Vol. 39, pp. 705–719. 10.1111/j.1502‐3885.2010.00164.x. ISSN 0300‐9483. A pollen‐based summer temperature (Tsummer) reconstruction reveals the Holocene climate history in southeastern Latvia and contributes to the limited understanding of past climate behaviour in the eastern sector of northern Europe. Notably, steady climate warming of the early Holocene was interrupted c. 8350–8150 cal. yr BP by the well‐known 8.2 ka cold event, recorded as a decrease of 0.9 to 1.8 °C in Tsummer. During the Holocene Thermal Maximum, c. 8000–4000 cal. yr BP, the reconstructed summer temperature was ~2.5–3.5 °C higher than the modern reconstructed value, and subsequently declined towards present‐day values. Comparison of the current reconstruction with other pollen‐based reconstructions in northern Europe shows that the 8.2 ka event is particularly clearly reflected in the Baltic region, possibly as a result of distinct climatic and ecological gradients and the sensitivity of the vegetation growth pattern to seasonal temperature change. The new reconstruction also reveals that the Holocene Thermal Maximum was warmer in Latvia than in central Europe and Fennoscandia. In fact, a gradient of increasing positive temperature anomalies is detected from northernmost Fennoscandia towards the south and from the Atlantic coast in Norway towards the continental East European Plain. The dynamics of the temperate broadleaved tree species Tilia and Quercus in Latvia and adjacent northern Europe during the mid‐Holocene give complementary information on the multifaceted climatic and environmental changes in the region.  相似文献   

10.
The coastal cliff section at Kås Hoved in northern Denmark represents one of the largest exposures of marine interglacial deposits in Europe. High‐resolution analyses of sediments, foraminifera, ostracods, and stable isotopes (oxygen and carbon) in glacial‐interglacial marine sediments from this section, as well as from two adjacent boreholes, are the basis for an interpretation of marine environmental and climatic change through the Late Elsterian‐Holsteinian glacial‐interglacial cycle. The overlying glacial deposits show two ice advances during the Saalian and Weichselian glaciations. The assemblages in the initial glacier‐proximal part of the marine Late Elsterian succession reveal fluctuations in the inflow of sediment‐loaded meltwater to the area. This is followed by faunal indication of glacier‐distal, open marine conditions, coinciding with a gradual climatic change from arctic to subarctic environments. Continuous marine sedimentation during the glacial‐interglacial transition is presumably a result of a large‐scale isostatic subsidence caused by the preceding extended Elsterian glaciation. The similarity of the climatic signature of the interglacial Holsteinian and Holocene assemblages in this region indicates that the Atlantic Ocean circulation was similar during these two interglacials, whereas Eemian interglacial assemblages indicate a comparatively high water temperature associated with an enhanced North Atlantic Current. The foraminiferal zones are correlated with other Elsterian‐Holsteinian sites in Denmark, as well as those in the type area for the Holsteinian interglacial in northern Germany and the southern North Sea. Correlation of the NW European Holsteinian succession with the marine isotope stages MIS 7, 9 or 11 is still unresolved.  相似文献   

11.
12.
A new core drilled at Nørrekær Enge, Løgstør, Denmark, shows terrestrial lake and bog sediments lying beneath 10 m of marine sediments. Pollen analysis, 14C dating and sedimentary observations show that these sediments relate to an ancient lake basin that was flooded when the rising sea levels reached 8.0 m b.s.l. This new study has allowed a review of previous data relating to shoreline displacement from the Limfjord region of northern Jutland, Denmark. Here we present a new shoreline displacement curve spanning the period between c. 11 700 and 7700 cal. a BP and built upon the Nørrekær Enge data and data from seven other boreholes and excavations from the Limfjord region. A previous shoreline displacement curve for this region suggested a very rapid relative sea‐level rise of 3 to 5 m 100 a?1 whereas this new curve suggests a much slower rise of around 1 m 100 a?1, similar to global rates.  相似文献   

13.
The Late Weichselian ice sheet of western Svalbard was characterized by ice streams and inter‐ice‐stream areas. To reconstruct its geometry and dynamics we investigated the glacial geology of two areas on the island of Prins Karls Forland and the Mitrahalvøya peninsula. Cosmogenic 10Be surface exposure dating of glacial erratics and bedrock was used to constrain past ice thickness, providing minimum estimates in both areas. Contrary to previous studies, we found that Prins Karls Forland experienced a westward ice flux from Spitsbergen. Ice thickness reached >470 m a.s.l., and warm‐based conditions occurred periodically. Local deglaciation took place between 16 and 13 ka. At Mitrahalvøya, glacier ice draining the Krossfjorden basin reached >300 m a.s.l., and local deglaciation occurred at c. 13 ka. We propose the following succession of events for the last deglaciation. After the maximum glacier extent, ice streams in the cross‐shelf troughs and fjords retreated, tributary ice streams formed in Forlandsundet and Krossfjorden, and, finally, local ice caps were isolated over both Prins Karls Forland and Mitrahalvøya and their adjacent shelves.  相似文献   

14.
15.
The lithostratigraphy of pre‐Late Weichselian sediments and OSL‐dating results from four localities in the Suupohja area of western Finland, adjacent to the centre of the former Scandinavian glaciations, are presented. The studied sections expose glacifluvial, quiet‐water, littoral and aeolian deposits overlain by Middle and/or Late Weichselian tills. Litho‐ and biostratigraphical results together with seven OSL age determinations on buried glacifluvial sediment at Rävåsen (94±15 ka) and on till‐covered littoral and aeolian sediments at Risåsen, Rävåsen, Jätinmäki and Kiviharju (79±10 to 54±8 ka), accompanied by previous datings and interpretations, suggest that the glacifluvial sediments at Risåsen were deposited at the end of the Saalian Stage (MIS 6) and those at Risåsen were deposited possibly in the Early Weichselian Substage (MIS 5d?). Palaeosol horizons and ice‐wedge casts together with the dated littoral and aeolian sediments between the Harrinkangas Formation (Saalian) and the overlying till(s) indicate that western Finland was ice‐free during most of the Weichselian time. Littoral deposits, dated to the Middle Weichselian (MIS 4–3), occur at altitudes of 50–90 m a.s.l., which indicates significant glacio‐isostatic depression. The depression resulted from expansion of the ice sheet in the west of Finland at that time.  相似文献   

16.
The late‐glacial Bølling period was first identified by Johs. Iversen on the basis of pollen results from Lake Bølling Sø in Denmark. Because there were no radiocarbon dates from the sequence the Bølling Chronozone (12 000–13 000 14C yr BP) was later established on the basis of dates from other sites. A new project is reinvestigating the sediments from the Bølling Sø sequence with AMS radiocarbon dating and multiproxy analyses. Here we present results of AMS radiocarbon dating, macrofossil analyses, cladoceran analyses (Cladocera concentrations and chydorid ephippia) and Pediastrum analyses (concentrations). The AMS dates on land plant remains show that the lower part of the sequence is around 12 500 14C yr BP, and thus clearly pre‐dates the Allerød chronozone. However, construction of a chronology for the sequence was problematic, partly because of reworking of macroscopic plant remains. The climate ameliorated after glacial conditions to such an extent that growth of plants could begin at ca. 12 500 14C yr BP, but the results of multiproxy analyses show little evidence for a further warming period during the pre‐Allerød part of the sequence. Lake productivity was low, and tree birch rare or maybe absent. This may reflect widespread occurrence of dead ice, unstable soils, heavy in‐wash of minerogenic matter to the lake, resulting in turbid water and rapid sedimentation. The early pioneer vegetation was characterised by Salix polaris and Dryas octopetala, and by herbs. The Allerød Chronozone, and especially its initial part, appears to have been relatively warm but reduced cladoceran concentrations and increased proportion of chydorid ephippia suggest that climate cooled in the middle Allerød and that the late Allerød was colder than the early part. The early Younger Dryas was probably colder than the late Younger Dryas. Clear warming is apparent at the beginning of the Holocene, where the first macrofossil evidence of trees (Betula pubescens, Populus tremula) is found. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Knudsen, K. L., Jiang, H., Kristensen, P., Gibbard, P. L. & Haila, H. 2011: Early Last Interglacial palaeoenvironments in the western Baltic Sea: benthic foraminiferal stable isotopes and diatom‐based sea‐surface salinity. Boreas, 10.1111/j.1502‐3885.2011.00206.x. ISSN 0300‐9483. Stable isotopes from benthic foraminifera, combined with diatom assemblage analysis and diatom‐based sea‐surface salinity reconstructions, are used for the interpretation of changes in bottom‐ and surface‐water conditions through the early Eemian at Ristinge Klint in the western Baltic Sea. Correlation of the sediments with the Eemian Stage is based on a previously published pollen analysis that indicates that they represent pollen zones E2–E5 and span ~3400 years. An initial brackish‐water phase, initiated c. 300 years after the beginning of the interglacial, is characterized by a rapid increase in sea‐surface and sea‐bottom salinity, followed by a major increase at c. 650 years, which is related to the opening of the Danish Straits to the western Baltic. The diatoms allow estimation of the maximum sea‐surface salinity in the time interval of c. 650–1250 years. After that, slightly reduced salinity is estimated for the interval of c. 1250–2600 years (with minimum values at c. 1600–2200 years). This may be related to a period of high precipitation/humidity and thus increased freshwater run‐off from land. Together with a continuous increase in the water depth, this may have contributed to the gradual development of a stratified water column after c. 1600 years. The stratification was, however, particularly pronounced between c. 2600 and 3400 years, a period with particularly high sea‐surface temperature, as well as bottom‐water salinity, and thus a maximum influence of Atlantic water masses. The freshwater run‐off from land may have been reduced as a result of particularly high summer temperatures during the climatic optimum.  相似文献   

18.
A unique sequence of Late Saalian, Eemian and Early Weichselian strata is exposed in a coastal outcrop at Mommark in the western Baltic. The sedimentary facies and faunas reflect palaeoenvironmental changes from an initial freshwater lake followed by marine transgression and interglacial deposition in a palaeo-Baltic sea. The upper part of the Eemian marine record indicates regression followed by lacustrine sedimentation and deposition of Early Weichselian aeolian sediments, which are truncated by an erosional unconformity overlain by a till bed. The lower and middle parts of the sequence have previously been correlated with the European glacial-interglacial stratigraphy on the basis of pollen analysis, while the upper part has been dated for the present study using optically stimulated luminescence (OSL) of samples from the aeolian and glacial deposits. A similar complete glacial-interglacial-glacial succession has not previously been recorded from this area. The Mommark sequence of conformable strata has been subjected to lateral compression, evidenced by folding and low-angle reverse faults. Seismic records from the adjacent waters in the western Baltic reveal a system of buried Quaternary valleys in the area. It is suggested that the interglacial deposition took place in a basin within one of these valleys and that a slab constituting the Mommark sequence, originating from the margin of a valley, has been glaciotectonically displaced northwestwards to the present location.  相似文献   

19.
20.
We present a well‐dated, high‐resolution and continuous sediment record spanning the last c. 24 000 years from lake Bolshoye Shchuchye located in the Polar Ural Mountains, Arctic Russia. This is the first continuous sediment succession reaching back into the Last Glacial Maximum (LGM) ever retrieved from this region. We reconstruct the glacial and climate history in the area since the LGM based on sedimentological and geochemical analysis of a 24‐m‐long sediment core. A robust chronology was established using a combination of AMS 14C‐dating, the position of the Vedde Ash and varve counting. The varved part of the sediment core spans across the LGM from 24 to 18.7 cal. ka BP. We conclude that the lake basin remained ice‐free throughout the LGM, but that mountain glaciers were present in the lake catchment. A decrease in both glacial varve preservation and sedimentation rate suggests that these glaciers started to retreat c. 18.7 cal. ka BP and had disappeared from the catchment by 14.35 cal. ka BP. There are no indications of glacier regrowth during the Younger Dryas. We infer a distinct climatic amelioration following the onset of the Holocene and an Early to Middle Holocene thermal optimum between 10–5 cal. ka BP. Our results provide a long‐awaited continuous and high‐resolution record of past climate that supplements the existing, more fragmentary data from moraines and exposed strata along river banks and coastal cliffs around the Russian Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号