首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isotopic compositions of S (δ34S) and C (δ13C) were determined for the coal utilized by a power plant and for the fly ash produced as a by-product of the coal combustion in a 220-MW utility boiler. The coal samples analyzed represent different lithologies within a single mine, the coal supplied to the power plant, the pulverized feed coal, and the coal rejected by the pulverizer. The ash was collected at various stages of the ash-collection system in the plant. There is a notable enrichment in 34S from the base to the top of the coal seam in the mine, with much of the variation due to an upwards enrichment in the δ34S values of the pyrite. Variations in δ34S and in the amount of pyritic S in the coal delivered to the plant show that there was a change of source of coal supplied to the plant, between week one and week two of monitoring, supporting a previous study based on metal and sulfide geochemistry for the same plant. The fly ash has a more enriched δ34S than the pulverized coal and, in general, the δ34S is more enriched in fly ashes collected at cooler points in the ash-collection system. This pattern of δ34S suggests an increased isotopic fractionation due to temperature, with the fly ash becoming progressively depleted in 34S and the flue gas S-containing components becoming progressively enriched in 34S with increasing temperatures. Substantially less variation is seen in the C isotopes compared to S isotopes. There is little vertical variation in δ13C in the coal bed, with δ13C becoming slightly heavier towards the top of the coal seam. An 83–93% loss of solid phase C occurs during coal combustion in the transition from coal to ash owing to loss of CO2. Despite the significant difference in total C content only a small enrichment of 0.44–0.67‰ in 13C in the ash relative to the coal is observed, demonstrating that redistribution of C isotopes in the boiler and convective passes prior to the arrival of the fly ash in the ash-collections system is minor.  相似文献   

2.
Coal combustion in power plants in India produces large quantities of coal-related wastes, e.g. fly ash and bottom ash. Indian coals used in power stations are of high ash content, thus resulting in the generation of large amounts of fly ash (~100 million tons/year). Combustion of coal results in enhanced concentration of most radionuclides found in waste materials. In the present work, an attempt has been made to assess the radiological impact of the Kolaghat thermal power plant in West Bengal, India. The fly ashes and coal from the power plant were analysed for 238U, 232Th and 40K by a NaI (Tl)-based gamma-ray spectrometer. The results show that 226Ra and 232Th range from 81.9-126 and 132-169 Bq/kg in fly ash and 25-50 and 39-55 Bq/kg in coal. These results are high compared to those of other thermal power plants of India. Hence, the Kolaghat fly ash has a significant amount of radioactivity which, if not properly disposed, will be a serious threat to the ambient environment.  相似文献   

3.
. Coal-burning power plants in Turkey produce large quantities of coal-related wastes, which are collected through the use of various systems. Coal ash is presently accumulating in Turkey at a rate in excess of 10 million tons (t) annually. Roughly 1% of this is being used in a variety of products such as concrete, aggregate in stabilizing roadways, etc. When coal is burned, loss of material results in an increased concentration of most radionuclides found in the waste material. The object of this study is to analyze radiochemical element concentration of coal, bottom ash, and fly ash, and to evaluate the gross radium isotope activities in groundwaters around Yatagan Thermal Power Plant. The results show that the waste disposal site near the thermal power plant contains a major enhancement of radioactivity.  相似文献   

4.
Tailings produced in a concentration plant are the discharge of solid wastes after grinding ore into size and selecting useful components in the specific economic and technological condition. According to statistics, for the mining of metal ore, non-metallic ore, coal, clay, etc, the production of tailings of the world is up to 100 million tons per year. The number of existing tailing piles is 12718 in China, of which the construction ones are 1526, accounting for 12% of the total, and the closed tailing piles are 1024, accounting for 8%. As of 2007, the national total tailings accumulation is 8.046 billion tons. The non-ferrous metal mining is one of the largest discharge of solid wastes industries because of its low comprehensive recovery rate. For example, the beneficiation and recovery rate of non-ferrous metal mine is from 50% to 60% in China, which is lower 10% to 15% than developed countries, and the associated non-ferrous metal recovery rate is 40%, which is lower 20% than developed countries. On the utilization of duns, Poland is 90% to 100%, United States, Australia, France, Canada, Belgium and other countries followed, while China is only about 20%. The utilization of fly ash is to 100% in Japan and Denmark, France is 65%, UK is 55%, and China is just 45%. Quantities of waste rock, waste slag, and waste water have occupied land, destructed vegetation, deteriorated the soil and water quality, and caused land subsidence, landslides, mud-flow and other geological disasters. Therefore, the comprehensive utilization of resources is the right choice of mining sustainable development, environment protection, resource conservation, economic and social development.  相似文献   

5.
Seyitömer power plant comprises 4.8% of Turkey's total energy production. The fly ash produced has been deposited in the area, since the 1960s, by a dry disposal technique. In 1997, wet disposal was improperly exercised in the area causing ash flow over agricultural fields. This study is concerned with the chemical analysis of ash, soil and water samples collected in the area following ash-removal studies after the ash flow in 1997. The results reveal that Na, K, Ca, Mg, Mn, Al, Fe, Co, and Cr contents of soil and water are governed by basement lithology in the area, whereas Cd, Pb, Zn, and Cu contents are determined by fly ash from disposal sites. Although lithogenic Cr and Co contents are exceedingly high, comparison with the regulatory standards for drinking water, irrigation water and agricultural soils reveals no pollution pertinent to solid waste production in waters, whereas there is moderate pollution by Pb and Cu in soils.  相似文献   

6.
骆亚生  李靖  徐丽 《岩土力学》2009,30(Z2):67-71
粉煤灰是火电厂燃煤的副产品,如何处理利用是国内外十分关注的问题。目前,解决这一问题的途径很多,利用粉煤灰进行筑坝或作为基础填筑材料是比较有效的消纳方法。粉煤灰是一种轻质、多孔松散体,在许多方面具有比较优越的工程性能,但因为纯的粉煤灰缺少必要的凝聚力,对水的反映较为敏感,从而对工程的安全运行造成不利影响。在粉煤灰中掺合不同量的黏土有望改善粉煤灰的工程性能,对不同掺土量粉煤灰力学特性的研究有助于更好促进粉煤灰的工程应用。以咸阳渭河电厂粉煤灰为研究对象,对其掺入不同比例的黄土掺合形成掺土粉煤灰,通过击实试验、压缩试验、直剪试验和三轴试验等研究不同掺土量下粉煤灰的工程特性,得到不同掺土量对粉煤灰变形及强度特性的影响规律,为在工程中有效利用粉煤灰,改善其工程性质提供参考。  相似文献   

7.
本文探讨利用粉煤灰、石灰-粉煤灰作为添加剂改良合肥膨胀土的可行性与改良效果。试验研究了粉煤灰、石灰-粉煤灰掺合物对膨胀土的胀缩性的影响以及养护作用对改良膨胀土胀缩性的影响。研究结果表明,随着掺灰率的增加,膨胀土的自由膨胀率、膨胀量、膨胀力与线缩率呈减小趋势,这说明掺粉煤灰可有效降低膨胀土的胀缩性。经过一定龄期养护后的击实样的膨胀试验结果表明,随着养护龄期的加长,膨胀土的膨胀量与膨胀力都有一定降低。  相似文献   

8.
The unintended release of coal ash to the environment is a concern due to the enrichment of contaminants such as arsenic (As) and selenium (Se) in this solid waste material. Current risk assessments of coal ash disposal focus on pH as the primary driver of leaching from coal ash. However, redox speciation of As and Se is a major factor for their mobilization potential and has received much less attention for risk assessments, particularly in disposal scenarios where coal ash will likely be exposed to microbially-driven redox gradients. The aim of this study was to demonstrate the differences of aerobic and anaerobic conditions for the leaching of As and Se from coal ash. Batch sediment-ash slurry microcosms were performed to mimic an ash spill scenario and were monitored for changes in As and Se speciation and mobilization potential. The results showed that the dissolved As concentrations were up to 50 times greater in the anaerobic microcosms relative to the aerobic microcosms during the two week incubation. This trend was consistent with As redox speciation determined by X-ray absorption spectroscopy, which indicated that 55% of the As in the solid phase at the end of the experiment was present as As(III) (a more leachable form of arsenic relative to As(V)). In the aerobic microcosms, only 13% of the As was As(III) and the rest was As(V). More than half of the Se was present as Se(IV) in the original fly ash and in the aerobic microcosms, while in the anaerobic microcosms Se was gradually transformed to less soluble Se(0) species. Likewise, dissolved Se concentrations were up to 25 times greater in the aerobic microcosms relative to anaerobic conditions. While the overall observations of As and Se mobilization potential from coal ash were consistent with expectations for aqueous and solid phase speciation of these elements, the findings directly show the relevance of these processes for coal ash disposal. These results highlight the need to select appropriate environmental parameters to include in risk assessments as well as provide potential geochemical monitoring tools through the use of dissolved Se/As ratios to determine the redox conditions of ash storage and spill sites.  相似文献   

9.
Characterization of coal-mine refuse as backfilling material   总被引:1,自引:1,他引:1  
Summary With increased production and more stringent regulations for air, water and ground pollution control, the safe and environmentally acceptable disposal of coal-mine refuse is becoming ever more demanding. Backfilling may provide an environmentally acceptable method for the disposal of waste materials. Increased resource recovery, enhanced ventilation control, and minimizing surface subsidence, underground coal-mine fires and spontaneous combustion of coal are potential advantages of backfilling. In this paper the physical and mechanical properties of coal-mine waste from different sites are described and the effects of these properties on the duty requirements of fill material are assessed. As a result of testing, it is concluded that if improving ground control is the only reason for backfilling, coal refuse alone does not appear to be a suitable stowing material. If coal-refuse disposal is also a consideration, then it may be more attractive as a stowing material.  相似文献   

10.
探讨了六盘水市煤岩资源开发过程中产生的废弃物,煤矸石、矿区废水、废气对其环境的危害性,指出其环境治理的紧迫性,应加强综合治理。  相似文献   

11.
Leaching characteristics of fly ash   总被引:6,自引:0,他引:6  
The disposal of fly ash as a byproduct of thermic power stations, results in significant environmental problems. The leaching of coal fly ash during disposal is of concern for possible contamination, especially for the aquatic environment when ash is in contact with water. The aim of this study was to investigate the leaching behaviour of fly ashes currently disposed in Kemerkoy Power Plant (Turkey) fly-ash-holding pond. The studies were conducted with fly ashes from the electrostatic precipitators (fresh fly ash) and from the fly ash pond (pre-leached fly ash). The fly ashes has alkaline in nature and pH ranges between 11.9 to 12.2. The pre-leached fly ash exhibited lower EC values (7,400 µS) than the fresh fly ash (10,300 µS). In contrast to Fe and Pb, the elements such as Cr, Cd, Cu and Co did not leach from the fly ash. The Ca and Mn concentrations decreased with increasing temperature whereas, Na and K concentrations increased. The results showed that the most important effects of fly ash leaching were pH, Na, Ca, K, Fe, Mg, Mn and Pb.  相似文献   

12.
垃圾焚烧飞灰水泥固化体强度稳定性研究   总被引:1,自引:0,他引:1  
针对垃圾焚烧飞灰安全处置技术要求,采用水泥对其进行固化、稳定化处理,研究了不同水泥添加量、不同养护时间和渗沥液浸泡时间对固化体无侧限抗压强度及破坏特性的影响,并对垃圾渗沥液的侵蚀机制进行了分析。结果表明:当水泥添加量小于5%,养护时间小于3 d时,飞灰固化体在渗沥液浸泡下迅速解体,垃圾渗沥液的侵蚀对飞灰固化体的强度有较大的影响,浸泡后的固化体呈现出明显的应变软化特征,而未经浸泡的固化体的强度增长符合y=a[1-exp(-bt)]模式。随着水泥添加量及养护时间的增加,飞灰固化体无侧限抗压强度增加,破坏应变减小,而随着浸泡时间的增加,飞灰固化体的无侧限抗压强度先增大后减小,转折点大约在5~7 d,破坏应变近似呈线性增大。渗沥液对飞灰固化体的侵蚀主要是其成分抑制了固化体水化反应和破坏了水化产物。研究成果可为垃圾焚烧飞灰的安全处置技术提供理论依据和参数支持。  相似文献   

13.
An overview is presented on possible mechanisms that control the leaching behaviour of the oxyanion forming elements As, Cr, Mo, Sb, Se, V and W in cementituous systems and alkaline solid wastes, such as municipal solid waste incinerator bottom ash, fly ash and air pollution control residues, coal fly ash and metallurgical slags. Although the leachability of these elements generally depends on their redox state, speciation measurements are not common. Therefore, experimental observations available in the literature are combined with a summary of the thermal behaviour of these elements to assess possible redox states in freshly produced alkaline wastes, given their origin at high temperature. Possible redox reactions occurring at room temperature, on the other hand, are reviewed because these may alter the initial redox state in alkaline wastes and their leachates. In many cases, precipitation of oxyanions as a pure metalate cannot provide a satisfactory explanation for their leaching behaviour. It is therefore highly likely that adsorption and solid solution formation with common minerals in alkaline waste and cement reduce the leachate concentration of oxyanions below pure-phase solubility.  相似文献   

14.
Fly ash is a waste by-product obtained from the burning of coal by thermal power plants for generating electricity. When bulk quantities are involved, in order to arrest the fugitive dust, it is stored wet rather than dry. Fly ash contains trace concentrations of heavy metals and other substances in sufficient quantities to be able to leach out over a period of time. In this study an attempt was made to study the leachabilities of a few selected trace metals: Cd, Cu, Cr, Mn, Pb and Zn from two different types of class F fly ashes. Emphasis is also laid on developing an alternative in order to arrest the relative leachabilities of heavy metals after amending them with suitable additives. A standard laboratory leaching test for combustion residues has been employed to study the leachabilities of these trace elements as a function of liquid to solid ratio and pH. The leachability tests were conducted on powdered fly ash samples before and after amending them suitably with the matrices lime and gypsum; they were compacted to their respective proctor densities and cured for periods of 28 and 180 days. A marked reduction in the relative leachabilities of the trace elements was observed to be present at the end of 28 days. These relative leachability values further reduced marginally when tests were performed at the end of 180 days.  相似文献   

15.
The production and utilization of coal is based on well-proven and widely used technologies. Fly ash, a coal combustion byproduct, has potential to produce a composite material with controlled and superior properties. The major challenges with the production of fly ash are in its huge land coverage, adverse impact on environment etc. It puts pressure on the available land particularly in a densely populated country like India. In India the ash utilization percentage has not been very encouraging in spite of many attempts. Stabilization of fly ash is one of the methods to transfer the waste material into a safe construction material. This investigation is a step in that direction. This paper presents the results of an investigation on compressive strength and bearing ratio characteristics of surface coal mine overburden material and fly ash mixes stabilized with lime for coal mine haul road construction. Tests were performed with different percentages of lime (2, 3, 6 and 9%). The effects of lime content and curing period on the bearing ratio and tensile strength characteristics of the stabilized overburden and fly ash mixes are highlighted. Unconfined compressive strength test results cured for 7, 28 and 56 days are presented to develop correlation between different tensile strengths and unconfined compressive strength. Empirical models are developed to estimate bearing ratio and tensile strength of mine overburden–fly ash–quick lime mixtures from unconfined compressive strength test results.  相似文献   

16.
Portland cement has been suggested as an effective stabilization (physico-chemical) method for hazardous waste. This research explored the immobilization of metals in various mixtures of Portland cement and fly ash waste sampled from coal power plant in the province of Lodz, central Poland. The stabilization of fly ash in Portland cement was investigated under a wide range of pH conditions (3–12). Leachability tests were used to determine the efficiency of the encapsulation by studying the dissolution of alkaline metals (sodium, potassium) and alkaline earth metals (calcium, magnesium). The lowest value of leached metals was obtained for ratio of ash to cement of 1:10 in a case of sodium and calcium, while ratio 1.5 gave the lowest leached effects for potassium and magnesium. The high effectiveness of solidification/stabilization process was gained in high pH values (9–11).  相似文献   

17.
A mathematical model is proposed that is designed to predict trace metal composition of leachates produced by coal fly ashes. This model is based on the assumption that the mobilization of trace metals from fly ash is primarily a surface desorption phenomenon. The validity of this model is tested using data from published sources. Good correlation is found between predicted trace metal concentrations and measured trace metal concentrations in experimentally produced leachates.  相似文献   

18.
Coal-fired power plants produce energy and many by-products (unburned carbon, fly ash, and bottom ash) that are normally stored in permitted ponds and landfills. When the storage facility fills to capacity, it is necessary to haul material off-site for disposal, construct a new storage facility, or find a use for some of the material. Because certain criteria must be met to successfully beneficiate the ash, mapping the ash reserve provides data that shows where the most promising recovery sites will be.The University of Kentucky Center for Applied Energy Research (CAER) in conjunction with Western Kentucky Energy (WKE) and the US Department of Energy are constructing an ash beneficiation plant to recover high quality fuel and lightweight aggregate from the ash ponds at WKE's Coleman Station in Hawesville, KY. To determine the locations of the most productive areas, an extensive sampling and mapping project is underway. An amphibious ATV-mounted hydraulic drill has been employed to take core samples throughout the pond. These samples are then evaluated for particle size distribution, carbon content, chemical and leaching properties. With this information as well as each drill-hole's GPS coordinates and aerial photographs of the plant site, digital maps have been produced showing trends of deposition of material in the pond. Using a Geographical Information System to compile the data, the feasibility of removing ash for beneficial re-use can assessed.  相似文献   

19.
《Applied Geochemistry》2002,17(2):93-103
Mimicking geochemical processes to solve environmental problems was implemented in dealing with waste acidic jarosite and alkaline coal fly ash. By placing these two chemically different materials adjacent to one another, a self-sealing layer was formed at the interface between both wastes, isolating and immobilizing chemical constituents in the process. A series of leaching experiments were performed on each material separately to study the release behavior of the principal constituents. Radiotracer experiments were conducted to explore diffusion and reaction of constituents such as Fe3+ in a combined jarosite/fly ash system. A model has been developed to simulate the coupled processes of diffusion and precipitation taking into account porosity change due to pore filling by precipitates. The formation of a self-sealing isolation layer in a hypothetical jarosite/fly ash disposal site was modelled. Leaching results indicate that the release of elements from jarosite is much larger than that from fly ash, and that the highly pH dependent release of Fe, Al, and Zn was controlled by the solubility of their hydroxides. Leaching results also suggest that precipitation reactions can be expected to occur at the interface between jarosite and alkaline coal fly ash where a large pH gradient exists. Radiotracer experiments showed that accumulation of constituents occurred at the interface. Modeled Fe3+ profiles in layered jarosite/fly ash were well validated by experiments. Modeling results also showed that with the accumulation of constituents at the interface, a new layer with low porosity was formed. Application of this model suggests that there is a potential use to form a self-sealing layer in jarosite/fly ash co-disposal sites.  相似文献   

20.
查甫生  刘松玉  杜延军 《岩土力学》2006,27(Z1):549-554
研究掺粉煤灰对合肥膨胀土的物理性质指标以及胀缩性指标等的影响,探讨利用粉煤灰改良膨胀土的措施与效果。试验研究结果表明,在膨胀土中掺入适量的粉煤灰可有效降低膨胀土的塑性指数、降低膨胀势、减小线缩率与降低活性。在膨胀土中掺入粉煤灰还可改变膨胀土的击实特性,一定击实功作用下,随着掺灰率的增加,土体的最优含水率与最大干密度均减小,膨胀土中掺入粉煤灰后,膨胀土可在较小的含水率下通过击实或压实达到稳定。掺灰膨胀土的膨胀量与膨胀力随养护龄期的增长而减小;没有经过养护的掺灰土,其无侧限抗压强度随掺灰率的变化几乎没有变化,经过7 d养护后,土的无侧限抗压强度有所增长,并且存在一个峰值点,合肥膨胀土的无侧限抗压强度所对应的最佳掺粉煤灰率约为15 %~20 %。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号