首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The Canadian Rocky Mountain headwaters support the water resource systems of the Canadian Prairies. Significant variations in natural headwater contributions have been observed due to warming climate. Projecting future natural headwater flows under climate change effects, however, has large uncertainty. First, there are difficulties in climate modeling and downscaling in alpine regions. Second, streamflow modeling in mountainous areas is extremely challenging. There is therefore a need to understand the effects of uncertainty in the natural inflow regime, and in particular how this translates into uncertainty in representing the state and the outflow of water resource systems. Considering the Oldman River basin in Alberta, Canada, we synthesized different inflow regimes based on site/inter-site properties of the historical inflow regime. The water resources system was then conditioned on the synthesized inflow regimes to identify the mechanisms of error propagation from the headwater streamflows to the water allocations. The results show that the response of the water resource system to the uncertainty in the generated inflow regime depends on the system state, flow condition and the component of interest. Generally, the response of the reservoirs to the uncertainty in the estimated inflow regime is more significant in dry years, in particular during low flow conditions. The response at the system outlet is rather different, as the propagation of the headwater uncertainty is more significant during high flow conditions. Also, similar inflow estimates in terms of error and uncertainty may result in different error and uncertainty estimates in the simulated outflows; therefore, lower bias and uncertainty in estimating the regional inflow regime does not necessarily mean lower bias and uncertainty in simulating the streamflow at the outlet of the system. Our results provide improved understanding of uncertainty propagation through complex water resource systems, but also portray the need for better climate and hydrological modeling in the Rocky Mountains for improved water management in the Canadian Prairies, particularly in the face of uncertain climate futures. This will be crucial if the natural headwater inflows decline and/or the system faces drought conditions.  相似文献   

2.
在地下工程中,由于天然地基承载力不足,带有地下室的主体结构采用CFG桩复合地基。因为CFG桩长螺旋钻施工设备限制,地下室底板下的CFG桩必须在深基坑开挖一部分后进行施工。在某深基坑工程中,随着CFG桩的施工,基坑周围地表出现明显开裂现象。为探究其原因,结合该基坑工程实例,利用FLAC3D软件,通过数值模拟分析考虑渗流作用下CFG桩基坑内施工对基坑周围地表变形的影响规律,并把计算结果同实际监测数据进行对比分析。研究结果表明:CFG桩在部分开挖基坑内施工的快速取土作用对基坑内被动土压力区产生扰动,削弱原有的被动土压力,导致基坑周围土体变形。基坑周围地表变形的影响范围超出2倍基坑深度的监测范围,因此,部分开挖基坑内施工CFG桩的基坑工程周围环境的监测范围应在满足国家规范要求的基础上适当增大。根据计算结果建议类似基坑工程监测范围距基坑边缘的距离采用基坑开挖深度与基坑底面以下CFG桩长之和。类似基坑工程设计应加大支护结构和止水帷幕深度,施工时从基坑内部向外部隔桩跳打,并适当增加工期,将有利于降低由于CFG桩基坑内施工对基坑周围土体的影响。  相似文献   

3.
Mathematical models of fresh subsoil water flows in a confined aquifer to a sea (pit, pool, and the like) containing salt water are considered. To study these models mixed boundary value problems of the theory of analytical functions are formulated and solved with the use of the Polubarinova-Kochina method. The models were used to develop algorithms for calculating displacement in situations where subsoil water flows discharge into the sea at lateral inflow or inflow from below. The effect of the model physical parameters on the character and extent of displacement was analyzed with the use of obtained exact analytical relationships and numerical calculations. The hydrodynamic structure is described, and specific features of the flows being modeled are established.  相似文献   

4.
Groundwater inflow estimation is essential for the design and construction of tunnel and the assessment of the environmental impacts. Analytical solutions used in current engineering practice do not adequately account for the effect of the excavation‐induced drawdown, which leads to significant change in pore water pressure distribution and reductions of the water level beyond tunnel. Based on the numerical analysis results, this article proposes semianalytical method to predict the height of lowered water level and groundwater tunnel inflow. The tunnel problem is conceptualized as two‐dimensional flow in a plane perpendicular to the tunnel axis. The analytical formula, considering the effect of the excavation‐induced drawdown, provides a better prediction of the tunnel inflow compared to the existing analytical formulas, even for the cases with inclined groundwater level.  相似文献   

5.
在既有轻轨高架车站下进行基坑开挖,势必对轻轨车站上部结构特别是柱基产生扰动,而目前国内已有的规范和标准中还未有对此施工控制标准的规定。针对上海市轨道交通9号线某车站换乘通道工程实例,结合对车站柱基变形的数值分析结果与现场监测数据,提出了轻轨高架车站柱基变形控制指标,可为同类型的基坑工程提供有益的参考。  相似文献   

6.
Understanding groundwater–surface water (GW–SW) interactions is vital for water management in karstic catchments due to its impact on water quality. The objective of this study was to evaluate and compare the applicability of seven environmental tracers to quantify and localize groundwater exfiltration into a small, human-impacted karstic river system. Tracers were selected based on their emission source to the surface water either as (a) dissolved, predominantly geogenic compounds (radon-222, sulphate and electrical conductivity) or (b) anthropogenic compounds (predominantly) originating from wastewater treatment plant (WWTP) effluents (carbamazepine, tramadol, sodium, chloride). Two contrasting sampling approaches were compared (a) assuming steady-state flow conditions and (b) considering the travel time of the water parcels (Lagrangian sampling) through the catchment to account for diurnal changes in inflow from the WWTP. Spatial variability of the concentrations of all tracers indicated sections of preferential groundwater inflow. Lagrangian sampling techniques seem highly relevant for capturing dynamic concentration patterns of WWTP-derived compounds. Quantification of GW inflow with the finite element model FINIFLUX, based on observed in-stream Rn activities led to plausible fluxes along the investigated river reaches (0.265 m3 s−1), while observations of other natural or anthropogenic environmental tracers produced less plausible water fluxes. Important point sources of groundwater exfiltration can be ascribed to locations where the river crosses geological fault lines. This indicates that commonly applied concepts describing groundwater–surface water interactions assuming diffuse flow in porous media are difficult to transfer to karstic river systems whereas concepts from fractured aquifers may be more applicable. In general, this study helps selecting the best suited hydrological tracer for GW exfiltration and leads to a better understanding of processes controlling groundwater inflow into karstic river systems.  相似文献   

7.
河水径向渗流会对河岸基坑稳定性及支护结构内力产生显著影响。以某深基坑工程为背景进行了三维流固耦合数值模拟分析,研究了渗流对深基坑土体及支护结构受力与变形的作用规律。研究结果表明:1初始水位时,渗流作用对土体水平应力与土体剪应力的影响较小,但水位上升后,坑底处土体水平应力明显增大,在坑壁拐角处应力集中现象突出,土体剪应力在开挖面以下的底脚处最大;2土体水平位移与竖向位移均在水位上升时呈递增趋势;3桩身弯矩与剪力在水位上升初期有较大增加,之后增长速度减小;4上层、下层锚杆的自由段和锚固段轴力在水位上升初期均有明显增加,但之后增加幅度很小;5安全系数在水位上升初期降低较多,之后以较小速度呈线性减小。  相似文献   

8.
Concentrations of heavy metals (Cu, Ni, Cd, Pb, Cr, and Zn) in bottom sediments, water, snow, and biota of the Uvod Reservoir, as well as of rare-earth elements (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Y, and Yb) in its water are assessed. Geochemical studies of concentrations of Cu, Ni, Cd, Pb, Cr, and Zn in soils, water, and snow allow us to state that the metals enter the reservoir mostly from natural sources; however, some part of them are of anthropogenic origin. The sum of concentrations of light rare-earth elements (La, Ce, and Nd) make almost the total of all rare-earth elements in the reservoir—from 70 to 97%, depending on the sampling site. The highest concentrations of metals (and the highest percentage of their labile forms) are recorded in the Priplotinnyi and Kolbaskinskii (in macrophite deposits) pools and at the site of water inflow from the Volga-Uvod canal. There is also reason to suppose a secondary entry of the elements under study into the water mass. The largest variations in metals’ concentrations are observed during the periods of spring and autumn floods, when a great quantity of terrigenous suspended matter enters the water body. The distribution of the above metals and rare-earth elements in water is uneven; their highest concentrations are observed in the site of water inflow from the canal and in the Uvod River (the latter is likely to be due to the effect of the settlement of Pistsovo). The analysis of biota (fennel-leaved pondweed and zooplankton) has shown that the Uvod Reservoir is polluted with heavy metals.  相似文献   

9.
1.IN~DUCTIONTurbiditycurrentisoneclassofflowsnameddensitycurrentorgravitycurrent(therHunterRouse(Yih(1980)),whichdePictstheintmsionofheaVyfluidintoalighterone.Usually,thedensitydifferencebetWeentWonuidisrelativelysmallandmixingacrosstheimerfaceoccurs.ThedrivingforceofdensitycurrentsisnotdensitydifferenceitselfbutthedifferenceinspeCmcweights.Turbiditycurrentisnamedwhenthedensitydifferenceisespeciallycausedbysuspendedfinesedimentparticles.Sincesediment-ladenflowcaninteraCtwiththelowerbou…  相似文献   

10.
The impact of the Black Sea Water (BSW) inflow on the circulation and the water mass characteristics of the North Aegean Sea is investigated using a high-resolution 3D numerical model. Four climatological numerical experiments are performed exploring the effects of the exchange amplitude at the Dardanelles Straits in terms of the mean annual volume exchanged and the amplitude of its seasonal cycle. Larger inflow of low salinity BSW influences the water characteristics of the whole basin. The largest salinity reduction is encountered in the upper layers of the water column, and the most affected region is the northeastern part of the basin. The winter insulation character of the BSW layer (low-salinity layer) is reduced by the seasonal cycle of the inflow (minimum during winter). The maximum atmospheric cooling coincides with the minimum BSW inflow rate, weakening the vertical density gradients close to the surface and thus facilitating the vertical mixing. The inflow rate of BSW into the North Aegean Sea constitutes an essential factor for the circulation in the basin. Increased inflow rate results into considerably higher kinetic energy, stronger circulation and reinforcement of the mesoscale circulation features. Although the position of the front between BSW and waters of Levantine origin does not vary significantly with the intensity of the BSW inflow rate, the flow along the front becomes stronger and more unstable as the inflow rate increases, forming meanders and rings. The changes in the intensity of BSW inflow rate overpower the wind and thermohaline forcing and largely determine the general circulation of the North Aegean Sea.  相似文献   

11.
修建在河流支流入汇口处的水利工程,同时受干、支流洪水共同作用,其防洪水位不但与洪水组合特性有关,还与洪水、水利工程行洪的耦合关系有关.已有采用设计洪水重现期对应的特征洪水组合,或者直接采用经验洪水组合进行调洪计算得到防洪设计水位的方法无法有效反映洪水与水利工程的相互作用.本文结合防洪标准的本质,利用Copula-蒙特卡罗模拟方法对修建在支流入汇口处的水利工程的防洪设计水位进行计算,并以珠江流域西江支流郁江广西桂平航运枢纽水闸为例展开研究.结果表明:Copula-蒙特卡罗模拟方法可以有效考虑干、支流洪水组合特性及其与水利工程行洪的耦合关系,以其计算得到的防洪设计水位唯一且可保证达到防洪标准的要求,可有效克服利用洪水重现期确定防洪设计水位存在的不确定性;在干、支流洪水共同作用下,以设计洪水重现期的不同特征组合计算得到的防洪设计水位相差非常大,且与达到防洪标准要求的防洪设计水位相比完全偏离了合理的误差范围,不宜以设计洪水重现期确定防洪设计水位;利用经验洪水组合计算难以合理反映不同工程的洪水及工程特性.研究成果可为修建在支流入汇口处受干、支流洪水共同影响的水利工程防洪设计提供更合理的理论依据和思路.  相似文献   

12.
Inflow to a tunnel is a great public concern and is closely related to groundwater hydrology, geotechnical engineering, and mining engineering, among other disciplines. Rapid computation of inflow to a tunnel provides a timely means for quickly assessing the inflow discharge, thus is critical for safe operation of tunnels. Dewatering of tunnels is another engineering practice that should be planned. In this study, an analytical solution of the inflow to a tunnel in a fractured unconfined aquifer is obtained. The solution takes into account either the spherical or slab-shaped matrix block and the unsteady state interporosity flow. The instantaneous drainage water table and anisotropic hydraulic conductivities of the fractures network are also considered. Both uniform flux and uniform head boundary condition are considered to simulate the constant head boundary condition in the tunnel. The effects of the hydraulic parameters of the fractured aquifer on the inflow variation of the tunnel are explored. The application of the presented solution to obtain the optimum location and discharge of the well to minimize the inflow to a tunnel is illustrated.  相似文献   

13.
济南某商业广场超过50000 m^2的基坑采用一种改进的斜支撑支护体系进行支护,与普通斜支撑支护型式不同,该支护体系包括支护桩、斜撑、立柱与支撑桩。本文采用FLAC^3D显式有限差分数值计算分析方法,并结合支护桩水平位移测斜数据,对该支护体系的变形特性进行分析研究,从中论证各支护单元在3个开挖阶段的运动学效应。研究结果表明,该斜支撑支护体系可以把各支护单元以及它们之间的土体充分调动起来,相互之间积极协调,以抵挡基坑开挖带来的土压力,从而减小基坑周围土体位移,保障周围道路、地下设施及周边建筑的正常运行。  相似文献   

14.
Biofiltration systems represent an effective technology for the management of urban stormwater runoff volumes and quality. The performance of these systems, although largely dependent on their physical characteristics, is also strongly affected by the natural variability of runoff occurrence and volumes. This article presents a model that describes the statistical behaviour of the main variables involved in the water balance of a biofiltration system, given its main physical properties (filter media and vegetation types) and accounting for the natural inflow variability in terms of occurrence and water volumes. The model permits the analytical derivation of the long‐term (e.g. annual) probability density function of the soil water content in the filter media and the estimation of the main statistics of water fluxes, that is, outflow, evapotranspiration and overflow. By relating the soil water content in the filter media before inflow events to the outflow total nitrogen concentrations, the model also gives estimates of the statistics of nitrogen removal performance as a function of inflow variability. The model was tested against field data collected at a stormwater biofiltration system in Melbourne, Australia. The model could be used to rapidly assess the hydrologic and nitrogen treatment performance of alternative applications of biofiltration for stormwater management across a range of climates. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
《Marine pollution bulletin》2012,64(5-12):237-242
Terrigenous loading into enclosed water bodies has been blamed for eutrophic conditions marked by massive algal growth and subsequent hypoxia due to decomposition of dead algal cells. This study aims to describe the eutrophication and hypoxia processes in a semi-enclosed water body lying near a big metropolis. Phosphorus mass balance in a small inlet, Ohko Inlet, located at the head of Hiroshima Bay, Japan, was quantified using a numerical model. Dissolved inorganic phosphorous inflow from Kaita Bay next to the inlet was five times higher than that from terrigenous load, which may cause an enhancement of primary production. Therefore, it was concluded that not only the reduction of material load from the land and the suppression of benthic flux are needed, but also reducing the inflow of high phosphorus and oxygen depleted water from Kaita Bay will form a collective alternative measure to remediate the environmental condition of the inlet.  相似文献   

16.
Oil sands mining in Alberta transforms the boreal landscape of forests and wetlands into open pits, tailings ponds and overburden piles. Whereas reclamation efforts have primarily focused on upland forests, rebuilding wetland systems has recently become a motivation for research. Wetland creation and sustainability in this region is complicated by the sub‐humid climate and salinity of underlying mining material. In 2012, Syncrude Canada Ltd. completed the construction of the Sandhill Fen Watershed (SFW), a 52‐ha upland‐wetland system to evaluate wetland reclamation strategies on soft tailings. SFW includes an active pumping system, upland hummocks, a fen wetland and underdrains. To evaluate the influence of management practices on the hydrology of the system, this study reports the water balance from January 2013 to December 2014, the first 2 years after commissioning. A semi‐distributed approach was taken to examine the fluxes and stores of water in uplands and lowlands. Natural and artificial inputs and outputs were measured using a series of precipitation gauges and pumps, and evapotranspiration was quantified using three eddy covariance towers. A series of near surface wells recorded water table position. Both 2013 and 2014 were normal rainfall years, with 2013 having more and 2014 less snow than normal. In 2013, inflow/outflow from pumping was the predominant hydrological fluxes, resulting in considerable variability in water table position and storage changes throughout the summer. In 2014, the artificial addition of water was negligible, yet the water table remained near the surface in lowland locations, suggesting that wetland conditions could be maintained under current conditions. Evapotranspiration rates between uplands and lowlands were similar between years and sites, ranging from 2.2 ± 1.8 to 2.5 ± 1.2 mm/day and were largely controlled by climate. These rates were less than nearby older upland systems, suggesting that water balance partitioning will change as vegetation develops. Comparison between years and with natural systems provides insight on how management practices influence hydrologic dynamics and the overall water balance of the SFW. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Terrigenous loading into enclosed water bodies has been blamed for eutrophic conditions marked by massive algal growth and subsequent hypoxia due to decomposition of dead algal cells. This study aims to describe the eutrophication and hypoxia processes in a semi-enclosed water body lying near a big metropolis. Phosphorus mass balance in a small inlet, Ohko Inlet, located at the head of Hiroshima Bay, Japan, was quantified using a numerical model. Dissolved inorganic phosphorous inflow from Kaita Bay next to the inlet was five times higher than that from terrigenous load, which may cause an enhancement of primary production. Therefore, it was concluded that not only the reduction of material load from the land and the suppression of benthic flux are needed, but also reducing the inflow of high phosphorus and oxygen depleted water from Kaita Bay will form a collective alternative measure to remediate the environmental condition of the inlet.  相似文献   

18.
数值分析被广泛用于研究复杂环境下深基坑开挖变形,但本构模型及模型参数选择对计算结果合理性影响较大。比较分析多种本构模型的特点,硬化土小应变(HSS)本构模型能很好对软土场地基坑开挖引起的变形进行预测,但HSS模型参数多且取值困难。湖相沉积软土在昆明分布范围广,但针对此类土,特别是有机质含量及含水率较高的泥炭质土的HSS模型参数如何取值无相关研究。针对这些问题,对大量土工试验及取原状样进行室内试验资料进行分析,研究得到几个刚度参数间的经验取值关系,获得湖相沉积典型软土层的HSS模型参数。为检验HSS模型及相关参数取值的合理性,运用PLAXIS 2D数值分析软件,对软土场地的两个地铁基坑建立数值模型,计算在不同开挖工况下引起的基坑变形,并与实际变形监测值进行对比分析,两变形吻合较好,从而验证研究结果是合理可靠的,且研究结果对于深基坑支护设计、岩土工程研究及勘察等具有重要的参考价值。  相似文献   

19.
Information on water balance components such as evapotranspiration and groundwater recharge are crucial for water management. Due to differences in physical conditions, but also due to limited budgets, there is not one universal best practice, but a wide range of different methods with specific advantages and disadvantages. In this study, we propose an approach to quantify actual evapotranspiration, groundwater recharge and water inflow, i.e. precipitation and irrigation, that considers the specific conditions of irrigated agriculture in warm, arid environments. This approach does not require direct measurements of precipitation or irrigation quantities and is therefore suitable for sites with an uncertain data basis. For this purpose, we combine soil moisture and energy balance monitoring, remote sensing data analysis and numerical modelling using Hydrus. Energy balance data and routine weather data serve to estimate ET0. Surface reflectance data from satellite images (Sentinel-2) are used to derive leaf area indices, which help to partition ET0 into energy limited evaporation and transpiration. Subsequently, first approximations of water inflow are derived based on observed soil moisture changes. These inflow estimates are used in a series of forward simulations that produce initial estimates of drainage and ETact, which in turn help improve the estimate of water inflow. Finally, the improved inflow estimates are incorporated into the model and then a parameter optimization is performed using the observed soil moisture as the reference figure. Forward simulations with calibrated soil parameters result in final estimates for ETact and groundwater recharge. The presented method is applied to an agricultural test site with a crop rotation of cotton and wheat in Punjab, Pakistan. The final model results, with an RMSE of 2.2% in volumetric water content, suggest a cumulative ETact and groundwater recharge of 769 and 297 mm over a period of 281 days, respectively. The total estimated water inflow accounts for 946 mm, of which 77% originates from irrigation.  相似文献   

20.
The problem of level regime regulation in Lake Baikal under the contradictory conditions of the legislation now in force in RF is considered. The concepts analyzed in the study include the normal and extreme water abundance, the frequency of the useful inflow, and the factors that influence the level regime. The results of simulation of the level regimes under normal, extremely low, and extremely high water content are given. The possible changes in the level variation range in Baikal are estimated at different water content with technical and socioeconomic limitations taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号