首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 321 毫秒
1.
本文利用野外调查结果、二维地震反射剖面、钻井和测井数据建立了一条横穿库车河地区的南北向构造剖面,将库车冲断褶皱带划分为北部褶皱带、克依构造带、秋立塔格背斜带和亚肯背斜带。作者在库车冲断褶皱带北部发现了渐新世—中新世角度不整合,在库车南部亚肯背斜和东秋立塔格背斜顶部发现了构造生长地层,通过确定构造生长地层的底界,利用库车河地区古近系(下第三系)—第四系磁极柱,判断亚肯背斜和东秋立塔格背斜构造生长地层的沉积时代为5.2±0.2 Ma。上述结果暗示库车冲断褶皱带北部山前带的变形始于渐新世,并且经历了中新世、上新世的构造改造,南部秋立塔格背斜带和亚肯背斜带形成较晚,可能是上新世开始变形,而且变形活动持续至今,由此看来库车冲断褶皱带的变形时代由北向南变新。作者估算东秋立塔格背斜上新世以来(5.2±0.2 Ma)的构造变形量为7.5 km,变形速率为1.5 mm/a。  相似文献   

2.
晚新生代天山北缘构造变形定量研究   总被引:3,自引:1,他引:2       下载免费PDF全文
李传新  郭召杰 《地质科学》2011,46(3):709-722
晚新生代以来,由于印藏板块陆—陆碰撞,天山山脉重新活动并隆升剥蚀。确定天山隆升变形时间和规模对研究大陆岩石圈变形以及构造活动、气候和剥蚀关系具有重要意义。本文通过生长地层和磁性地层研究,结合天山北缘地震剖面的构造解析,确定了天山北缘三排平行于天山山脉的褶皱带形成时间,并对三排褶皱带的变形量进行平衡恢复,其中三排褶皱中第一排的构造缩短量约为2.9 km(缩短率为15.1%),构造形成时间约为6 Ma,其缩短速率为0.4 mm/a;第二排构造缩短量约为5.9km(缩短率为23.7%),构造形成时间约为2 Ma,缩短速率为2.9mm/a;第三排构造缩短量约为4.3 km(缩短率为15.7%),构造形成时间约为1Ma,缩短速率为4.3mm/a;结果表明晚新生代以来天山构造活动强度可能在加大。  相似文献   

3.
南天山库车褶皱冲断带构造几何学和运动学   总被引:56,自引:17,他引:56       下载免费PDF全文
汪新  贾承造  杨树锋 《地质科学》2002,37(3):372-384
印度板块与欧亚大陆的汇聚作用和持续碰撞使中亚内陆沿天山、昆仑山、阿尔金山发生变形,山脉前沿发育褶皱冲断带。南天山库车褶皱冲断带中段库车河地区发育3~4排东西走向的逆冲(掩)断层和相关褶皱,逆冲(掩)断层由北向南扩展,断层和褶皱的形成时代自北向南逐渐变新,北部山前带的变形发生于前中新世,南部秋立塔克背斜带和亚肯背斜带的变形时代为上新世(5.2±0.2Ma)。通过构造几何学和运动学分析,作者提出了库车褶皱冲断带的构造变形方式和演化模型。  相似文献   

4.
依据帕米尔—西昆仑北麓新生代前陆褶皱冲断带 3条构造剖面的详细分析,发现帕米尔—西昆仑北麓除山根地带发育高角度断层外,基本上以低角度逆掩断层为主,形成与逆冲推覆构造相关的褶皱变形。乌泊尔地区表现为由山脉向塔里木盆地滑移的隐伏冲断层和上覆褶皱;苏盖特—齐姆根—甫沙地区表现为山前的三角带和向盆地扩展的两排背斜带。帕米尔—西昆仑北麓前陆褶皱冲断带的主要构造变形时间始于上新世早期(距今约 4.6Ma),断层、褶皱的变形时代由山前向盆地逐步变新,变形强度由山脉向塔里木盆地逐步减弱。帕米尔—西昆仑北麓前陆褶皱冲断带的构造缩短量为 20~70km,缩短率为 35%~50%。  相似文献   

5.
构造地貌学重点关注构造和地表过程对于地形地貌演化的差异化作用,构造活动速率则是评估这种影响的一个重要指标。利用河流阶地数据计算河流下切速率从而约束构造抬升速率是常用的方法,但由于阶地成因复杂,这一方法具有不确定性。对于山前河流地貌序列,基于背斜段与未变形段的阶地拔河高度差以及阶地面形成年龄,计算得到的河流下切速率可在一定程度上消除气候等因素的影响,因此可用于估算背斜自阶地形成以来的平均抬升速率。基于该方法,本文通过研究天山北麓乌鲁木齐河、塔西河、玛纳斯河、金钩河、安集海河及奎屯河等河流在背斜段发育的主要阶地,分析了背斜抬升速率及其时空特征。天山北麓发育3排逆断裂一背斜带,结果表明位于第Ⅱ排逆断裂一背斜带的吐谷鲁背斜自约13ka以来的抬升速率为3.52mm/a,同时期霍尔果斯背斜构造抬升速率为4.8mm/a,玛纳斯背斜东端的抬升速率相对较小,为2ram/a;第Ⅲ排构造带中的独山子背斜全新世抬升速率仅为1.2~1.9mm/a。这可能表明,自山前向盆地方向晚第四纪背斜抬升速率大致呈减小趋势,与背斜地壳缩短量的空间分布规律基本一致。更多的阶地年龄数据有助于更好地揭示天山北麓晚第四纪背斜构造活动特征。  相似文献   

6.
北天山北缘构造剖面测量及多期构造变形   总被引:1,自引:0,他引:1       下载免费PDF全文
天山北缘为典型的大陆内部活动构造特征,发育准噶尔盆地南缘逆冲带,主要表现为新生代时期形成的多排平行山体的背斜和逆冲断层。为了详细研究该区主要构造变形特征和变形形成时间,2005年我们对天山北缘进行了详细的地表地质剖面测量,之后进行了多年地表地质区域调查,落实了关键砾岩地层时代,充分结合卫星遥感影像资料、二维三维地震剖面和钻井测井资料,应用断层相关褶皱理论,完成了一条近SN向的长度50 km的金钩河-安集海河构造地质大剖面。野外观察和地质测量以及生长地层和生长地层不整合分析表明,安集海深层背斜初始形成时间为中新世早期,在第四纪西域组(Q1x)、乌苏群(Q2)和第四纪中晚期(Q4)最终定型的浅表背斜,深层为断层转折褶皱和中浅层反冲的楔形构造叠加组合而成;霍尔果斯深层背斜初始形成时间为中新世晚期,在第四纪中晚期Q4最终定型,构造样式为深层断层转折褶皱、中深层楔形构造和浅层断层扩展背斜叠加组合而成。区域地质调查发现一条近东西走向285°,发育在中生界地层的准南走滑断层,该断层位于准南边界逆冲断裂以北,形成时间最晚(Q4)。根据准南安集海背斜、霍尔果斯背斜和准南边界逆冲断裂初始形成时间,可以认为准南构造初始逆冲次序为后展式,然后整个逆冲带从第四纪早期西域组晚期开始一直活动到现今。  相似文献   

7.
南天山库车秋里塔格褶皱带三维构造分析   总被引:17,自引:3,他引:17  
笔者利用库车秋里塔格地区3000km的二维地震反射资料,结合地表构造测量成果,分段叙述秋里塔格褶皱带的构造几何学和运动学性质,说明构造交汇部位断层和褶皱的叠加过渡关系,并通过二维构造剖面的组合,建立秋里塔格褶皱带的三维构造几何模型。研究发现秋里塔格褶皱带为浅部断层传播褶皱与深部断层转折褶皱叠加形成的复合型背斜带,深部台阶状逆断层的叠加作用、叠加断层位移量的转换、断层断坡高度的变化造成地表背斜沿走向发生变化,笔者通过测量断层叠加方式、断层位移量转换、断层断坡高度,说明秋里塔格褶皱带背斜叠加、扭曲、分叉现象的构造机理,并且给出了秋里塔格褶皱带断层的滑移量。  相似文献   

8.
天山北麓活动背斜带的变形特征   总被引:4,自引:0,他引:4  
天山中段北麓发育有3排受逆断裂控制的背斜带,对这些构造带的研究有助于认识天山及其前陆盆地晚新生代构造变形的机理.基于地层变形分析,并结合前人的研究成果,从整体上探讨了这3排构造带的变形时间与基本模式.分析表明,天山北麓第Ⅰ排构造带的托斯台背斜自中新世褶皱作用明显;第Ⅱ排构造带吐谷鲁背斜于约6.0Ma开始生长,伴随发育同构造沉积即生长地层;第Ⅲ排构造带独山子背斜发育时间应晚于约2.6Ma.这一变形时间序列揭示天山北麓3排逆断裂-褶皱带的构造变形具有向前陆盆地逐步扩展的特征,并伴随产生幅度不等的地壳缩短.天山北麓约8~15km的地壳缩短总量表明,晚新生代以来构造驱动沿约130km宽的山麓带是相对均一的.  相似文献   

9.
库车再生前陆盆地冲断构造楔特征   总被引:60,自引:4,他引:56  
库车再生前陆盆地冲断构造楔由一系列向南运动的逆冲断层和相关褶皱组成。冲断楔的北部以断层转折褶皱、断层传播褶皱、双重逆冲构造为主。断层楔的前缘发育了很好的滑脱膝折背斜,全为盲断层控制,形成隐蔽式前锋。冲断层的就位从中新世开始,自北向南迁移,前锋的构造形成在第四纪。造成逆冲断层的地壳水平缩短作用速度在中新世较慢,平均为0.355mm/a,上新世中期达0.82mm/a,而到上新世晚期和第四纪速度增大了约一个数量级,达到1.29-3mm/a。  相似文献   

10.
将地表河流阶地变形特征与运动学模型、地貌年代相结合,可以推测出地下断层几何形态、断层变形量与变形速率.定量限定天山山间盆地不同褶皱冲断带的几何形态、运动学和变形速率是研究天山挤压应变吸收作用的关键.在天山东部的尤路都斯盆地内,开都河横穿巴音背斜构造发育并保存了较为完整的三级河流阶地.通过详细的野外考察发现,处于巴音背斜构造后翼位置的河流阶地具有宽阔、连续和逐渐倾斜的特点,符合通过翼部旋转运动而褶皱变形的铲式逆冲断层模型,其深部根植于平面断层斜坡.基于该运动学模型并结合阶地年代,得到巴音背斜构造下伏断层晚第四纪滑动速率为(0.35-0.06)~(0.35+0.16) mm/a,地壳缩短速率为(0.23-0.04)~(0.23+0.10)mm/a.对比尤路都斯盆地北部那拉提断裂的构造应变和GPS速率揭示的东天山南北向总地壳缩短速率,认为巴音背斜构造的变形作用占尤路都斯盆地总变形作用的15%~20%,进而容纳了~2%的东天山南北向地壳应变.东天山内部的山间盆地在天山变形量分配中占据重要作用.  相似文献   

11.
Intracontinental foreland basins with fold-and-thrust belts on the southern periphery of the Tianshan orogenic belt in China resulted from still-active contractional deformation ultimately cased by the India–Asia collision. To quantify the amounts of shortening distance and the rates of deformation, and to decipher the architectural framework, we mapped the stratigraphy and structure of four anticlines in the Kuqa and Baicheng foreland thrust belts in the central southern Tianshan. In the Baicheng foreland thrust belts, Lower Cretaceous Baxigai and Bashijiqike Formations located in the core of the Kumugeliemu anticline are overlain by the Paleocene to Eocene Kumugeliemu Formation, above which are conformable Oligocene through Pleistocene sediments. A disharmonic transition from parallel to unconformable bedding at the boundary of the Miocene Kangcun and Pliocene Kuqa Formations suggests a change from pre-detachment folded strata to beds deposited on top of a growing anticline. Most of the anticlines have steep limbs (70–90°) and are box to isoclinal folds, suggestive of detachment folding or faulted detachment folding (faults that transect a fold core or limb). Shortening estimates calculated from the cross-sections by the Excess area method indicate that the total shortening for the Kelasu, Kuchetawu, Kezile and Yaken sections are 6.3 km, 6.4 km, 5.8 km and 0.6 km, respectively, and the respective depths of the detachment zones are (2.3 km and 6.9 km), 2.3 km, 2.5 km and 3.4 km. Time estimates derived from a paleomagnetic study indicate that the transition to syn-folding strata occurred at ∼6.5 Ma at the Kuchetawu section along the Kuqa river. In addition, according to our field observations and previous sedimentary rate studies, the initial time of folding of the Yaken anticline was at 0.15–0.21 Ma. Therefore, the average shortening rate that began at ∼6 Ma was ∼2 mm/a for the Kelasu, Kuchetawu and Kezile sections. At 0.15–0.21 Ma, the average shortening rate increased to 3–4 mm/a in the Yaken section. Combined with the recent GPS data, the shortening rate in the central southern Tianshan area increased to 4.7 ± 1.5 mm/a at present. We suggest that there was a linear increase in shortening rate in the southern Tianshan foreland basin, which also indicates that the far field stress increased considerably from the late Miocene to Present in response to the India–Asia collision.  相似文献   

12.
We present the results of mapping selected cross-sections across the margins of the Chinese Tien Shan, an intracontinental mountain belt that formed in response to the India-Eurasia collision. This belt contains significant lateral variation in topography, structure, and stratigraphy at all scales, and our estimated rates of shortening also reveal a distribution of shortening that varies laterally. At the largest scale, it consists of two major high mountain ranges in the west that merge eastward into a complex, single high mountain belt with several distinct ranges, then separates farther eastward into several low mountain ranges in the south and a single narrow high mountain range in the north. Active fold-and-thrust belts along parts of the north and south flanks of the Tien Shan involve only Mesozoic and Cenozoic sedimentary cover, which varies in both stratigraphy and structure from east to west. The southern fold-and-thrust belt decreases in width and complexity from west to east and ends before reaching Korla. The northern belt begins near the longitude where the southern belt ends, and increases in width and complexity from west to east. Within these two fold-and-thrust belts are both E-W and N-S variations in stratigraphy at the scale of the fold-and-thrust belts and across individual structures. All these variations make it very difficult to generalize either structure or stratigraphy within the Tien Shan or within local areas.

Four maps and cross-sections, two across each of the northern and southern fold-and-thrust belts, imply different magnitudes of shortening. In the eastern part of the northern belt, a cross-section along the southern part of the Hutubi River yields shortening of 6.2 km, and a section to the north across the Tugulu anticline yields shortening of 5.5 km. The two parts of the cross-section cannot be added because the Tugulu anticline lies 20 km west of the Hutubi River, and diminishes greatly in amplitude toward the Hutubi River. In the western part of the northern belt, cross-sections require 4.6 to 5.0 km of shortening at Tuositai and 2.12 to 2.35 km across the Dushanzi anticline. The Tuositai structure lies south of the Dushanzi anticline, but shortening in these two areas also cannot be summed, because they seem to be separated by a N-trending strike-slip fault. In the western part of the southern fold-and-thrust belt, an incomplete cross-section along the Kalasu River suggests shortening of 12.1 to 14.1 km. If the estimated shortening of 6 to 7 km in the Qiulitage anticline, which we did not map, is added, the total shortening in this cross-section would be ~18 to 21 km. To the east, a complete cross-section at Boston Tokar yielded shortening of 10.3 to 13.0 km.

Calculating long-term shortening rates from these four cross-sections is difficult, because the time of initiation of deformation is poorly known. In the Kalasu River area of the southern belt, there is evidence that limited shortening of 2 to 4 km occurred in the early Miocene, if major thickness changes in deposition of conglomerate unit 3b are interpreted to be growth strata. Geological evidence suggests that most of the shortening began in both belts after the beginning of the deposition of the thick conglomerate unit shown as lower Quaternary on Chinese geological maps. Strata within the middle part of these conglomerates were deposited during the growth of the folds. Presence of Equus near the base of similar conglomerates indicates a Quaternary age, but the fossil localities are far from most of our cross-sections, and the contemporaneity of the rocks remains in question. The beginning of conglomerate deposition may be controlled by climate change, and if so, the beginning of conglomerate deposition may be generally contemporaneous throughout the region at ~2.5 Ma. Deformation began at some time after the onset of conglomerate deposition, but this time is not well constrained. Thus we have calculated shortening rates for 2.5, 1.6, and 1.0 Ma that should bracket maximum and minimum slip rates. These calculations yield the following ranges in the northern fold-and-thrust belt: southern Hutubi River = 2.5 to 6.2 mm/yr; Tugulu anticline = 2.1 to 5.5 mm/yr; Tuositai anticline = 1.8–2.0 to 4.6–5.0 mm/yr; and Dushanzi anticline = 0.8 to 2.1–2.4 mm/yr; and in the southern fold-and-thrust belt: Kalasu River = 4.6–5.6 (including the Qiulitage anticline = 7.2–8.4) to 12.1–14.1 (including Qiulitage anticline = 18–21) mm/yr; and at Boston Tokar = 4.1–5.2 to 10.3–13.1 mm/yr. If 2 to 4 km of shortening occurred in the Kalasu River section during early Miocene time, the long-term rates for Quaternary time are 3.2–4.8 (including Qiulitage anticline = 5.6–7.6) to 8.1–12.1 (including Qiulitage anticline = 14–19) mm/yr.

Calculation of the shortening rate across the entire width of the Tien Shan is difficult because of the rapid lateral variations in structure and because of active deformation within the range, which we have not studied. The cross-sections at Boston Tokar in the south and Tuositai in the north lie along the same longitude. Adding the shortening rates in these areas would yield a minimum range (using 2.5 Ma as the initiation time) of 5.7 to 7.2 mm/yr. If deformation began at 1.6 or 1.0 Ma, the range of shortening rates would be 10–11.2 mm/yr to 14.9–18.1 mm/yr, respectively. Because the first indication of structural growth with the mapped areas occurs above the base of the conglomerates at the top of the stratigraphic succession, a minimum shortening rate greater than 5.7 to 7.2 mm/yr is more likely.

Both the marginal fold-and-thrust belts have a thin-skinned geometry with the drcollement at -6 to 10 km and within Mesozoic and Cenozoic sedimentary rocks. Toward the interior of the range the decollement must pass into the Paleozoic basement rocks and steepen beneath the flanks of the range. The structural style is similar to that in the Laramide Rocky Mountains and the California Transverse Ranges. The highest parts of the Tien Shan are adjacent to areas of active shortening. Such a relation might suggest that the major uplift of the Tien Shan is very young, mostly latest Cenozoic or Quaternary in age. The shortening across the Tien Shan is inhomogeneous and spatially distributed.  相似文献   

13.
新生代以来,受印度极块与欧亚大陆的碰撞和持续汇聚作用的影响,天山强烈变形隆升,并在南北两侧形成了一系列冲断推覆构造.大山北缘由南向北发育了3排褶皱-冲断带,第三排独山子-安集海构造形成于第四纪以来.根据野外地表考察结果并利用二维反射地震剖面资料,定量分析了独山子背斜和安集海背斜的构造几何学和运动学特征,确定了他们的变形时间和变形量.独山子背斜和安集海背斜的最小缩短量分别为4340m和l240m,缩短率分别为15.74%和7.2%,由于构造降升幅度的差异,造成了发育于北天山山前的一系列河流发生横向迁移,奎屯河和安集海河偏流向东发生河流改道.  相似文献   

14.
天山南北缘分别发育了库车前陆冲断带和乌鲁木齐前陆冲断带,南缘前陆冲断带发育4排褶皱冲断构造,北缘前陆冲断带发育3排褶皱冲断构造。天山南北缘前陆冲断构造形成时间的对比研究表明,南缘第一排构造带起始时间为23.3Ma,构造形变从山前由北向南依次展开;北缘第一排构造带的形成时限为10~8Ma,构造形变从山前开始由南向北依次展开。平衡剖面研究表明,天山南北缘地壳缩短率也存在明显差异,南缘前陆冲断带地壳缩短率为31%~59%,北缘前陆冲断带地壳缩短率为15.13%~23.74%,南缘构造缩短量要大于北缘,这种差异正是印度板块和欧亚板块碰撞的远距离构造效应从南向北传播造成的,也真实反映了天山的陆内造山过程。目前天山南缘前陆变形构造中已经发现几个规模较大的油气田,北缘虽有多处油气显示和油气田的发现,但数量和规模均较南缘少和小。天山南北缘生储盖等石油地质条件基本相似,大型油气藏形成的差异可能主要是由天山南北缘前陆冲断带启动时间的不同造成的。  相似文献   

15.
天山南北缘分别发育了库车前陆冲断带和乌鲁木齐前陆冲断带,南缘前陆冲断带发育4排褶皱冲断构造,北缘前陆冲断带发育3排褶皱冲断构造。天山南北缘前陆冲断构造形成时间的对比研究表明,南缘第一排构造带起始时间为23.3Ma,构造形变从山前由北向南依次展开;北缘第一排构造带的形成时限为10~8Ma,构造形变从山前开始由南向北依次展开。平衡剖面研究表明,天山南北缘地壳缩短率也存在明显差异,南缘前陆冲断带地壳缩短率为31%~59%,北缘前陆冲断带地壳缩短率为15.13%~23.74%,南缘构造缩短量要大于北缘,这种差异正是印度板块和欧亚板块碰撞的远距离构造效应从南向北传播造成的,也真实反映了天山的陆内造山过程。目前天山南缘前陆变形构造中已经发现几个规模较大的油气田,北缘虽有多处油气显示和油气田的发现,但数量和规模均较南缘少和小。天山南北缘生储盖等石油地质条件基本相似,大型油气藏形成的差异可能主要是由天山南北缘前陆冲断带启动时间的不同造成的。  相似文献   

16.
库车新生代构造性质和变形时间   总被引:126,自引:6,他引:120  
库车构造位于南天山古生代碰撞造山带之南,为塔里木盆地最北的一个构造带。它自北而南可分为边缘逆冲( 隐伏构造楔) 、斯的克背斜带、北部线性背斜带、拜城盆地、南部背斜带。每个背斜带又包含有若干逆冲断层相关褶皱,它们是断层转折褶皱、断层传播褶皱、滑脱褶皱、断层传播 滑脱混生褶皱、双重逆冲构造、突发构造、三角带构造。底部逆冲断层向南变浅,堆叠逆冲岩席向南变薄,总体上形成一个向南的逆冲构造楔。逆冲断层在斯的克背斜带侵位最早(25 Ma) ,在北部线性背斜带为169 Ma,拜城盆地中的大宛其背斜为36 Ma,南部背斜带为53 Ma( 北部) 和18 Ma( 南部) ,变形作用向南变新。库车构造是印 藏板块碰撞的内陆构造响应,是二叠纪前陆盆地复活而成的再生前陆盆地变形带  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号