首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eastern margin of the East European Craton (EEC) has a long lasting geological record of Precambrian age. Archaean and Proterozoic strata are exposed in the western fold-and-thrust belt of the Uralides and are known from drill cores and geophysical data below the Palaeozoic cover in the Uralides and its western foredeep. In the southern Uralides, sedimentary, metamorphic and magmatic rocks of Riphean and Vendian age occur in the Bashkirian Mega-anticlinorium (BMA) and the Beloretzk Terrane. In the eastern part of the BMA (Yamantau anticlinorium) and the Beloretzk Terrane, K-Ar ages of the <2-µm-size fraction of phyllites (potassic white mica) and slates (illite) give evidence for a complex pre-Uralian metamorphic and deformational history of the Precambrian basement at the southeastern margin of the EEC. Interpretation of the K-Ar ages considered the variation of secondary foliation and the diagenetic to metamorphic grade. In the Yamantau anticlinorium, the greenschist-facies metamorphism of the Mesoproterozoic siliciclastic rocks is of Early Neoproterozoic origin (about 970 Ma) and the S1 cleavage formation of Late Neoproterozoic (about 550 Ma). The second wide-spaced cleavage is of Uralian origin. In the central and western part of the BMA, the diagenetic to incipient metamorphic grade developed in Late Neoproterozoic time. In post-Uralian time, Proterozoic siliciclastic rocks with a cleavage of Uralian age have not been exhumed to the surface of the BMA. Late Neoproterozoic thrusts and faults within the eastern margin of the EEC are reactivated during the Uralian deformation.  相似文献   

2.
In the western fold-and-thrust belt of the southern Urals, the Kübler and Árkai indices determined on shales, slates and phyllites record an increase from lower late diagenetic to epizonal grade from west to east. The metamorphic grade varies strongly within the different tectonic segments, which are separated by major thrusts. The increase of diagenetic and incipient metamorphic grade from the footwall to the hanging wall of all major Upper Palaeozoic thrusts indicates a pre-Permo/Triassic origin. West of the Avzyan thrust zone, the diagenetic to incipient metamorphic grade is related to the Palaeozoic basin development and reached the final grades in Late Carboniferous to Early Permian times. East of the first Avzyan thrust in the Yamantau anticlinorium, the diagenetic to lower greenschist metamorphic grade is possibly of Neoproterozoic origin and might be related to the development of the Neoproterozoic basin at the eastern margin of the East European Craton. The eastern part of the Yamantau anticlinorium was exhumed below 200 °C in the Late Carboniferous or Early Permian. The diagenetic grade of the autochthonous Palaeozoic sedimentary units increases toward the stack of Palaeozoic nappes and might partly be caused by the deformational process due to the emplacement of the Palaeozoic nappes. Within the Timirovo thrust sheet, the decrease of metamorphic grade with stratigraphic age developed prior to the emplacement of the nappes. The upper anchizonal metamorphic grade of the Upper Devonian slates of the Zilair nappe results from the deformation process related to the Lower Carboniferous nappe emplacement.  相似文献   

3.
博格达山晚石炭纪造山活动的变形地质记录   总被引:13,自引:2,他引:13  
主要由钙碱性火山岩、火山碎屑岩组成的博格达古岛弧是天山缝合造山带的重要组成部分 ,是一个发育较成熟的山链 ,其演化经历了晚古生代的韧性剪切收缩 ;中生代伸展调整及新生代再造山过程。晚古生代的造山活动在博格达山有很好的地质记录 ,并以显著的韧性剪切变形带的形成和发育同造山的褶皱构造为特点。剪切变形带内同构造的石英脉中的锆石U PbSHRIMP测年结果与山链中花岗岩、辉长岩年龄颇为一致 (311~ 316Ma) ,这个年龄反映在结束洋盆散聚、碰撞焊接的晚华力西期造山过程中 ,博格达古岛弧内存在一次虽不甚强烈 ,但又较为明显的构造岩浆事件 ,其成因可能与引起石炭纪大规模裂陆式喷发的深部断裂构造重新活动有关。  相似文献   

4.
An integrated geological study of the tectono-metamorphic evolution of the metamorphic complex of Beloretzk (MCB) which is part of the eastern Bashkirian mega-anticlinorium (BMA), SW Urals, Russia shows that the main lithological units are Neoproterozoic (Riphean and Vendian age) siliciclastic to carbonate successions. Granitic, syenitic and mafic intrusions together with subaerial equivalents comprise the Neo- and Mesoproterozoic magmatic rocks. The metamorphic grade ranges from diagenetic and very low grade in the western BMA to high-grade in the MCB. The N–S trending Zuratkul fault marks the change in metamorphic grade and structural evolution between the central and eastern BMA. Structural data, Pb/Pb-single zircon ages, 40Ar/39Ar cooling ages and the provenance signature of Riphean and Vendian siliciclastic rocks in the western BMA give evidence of Mesoproterozoic (Grenvillian) rifting, deformation and eclogite-facies metamorphism in the MCB and a Neoproterozoic (Cadomian) orogenic event in the SW Urals. Three pre-Ordovician deformation phases can be identified in the MCB. The first SSE-vergent, isoclinal folding phase (D1) is younger than the intrusion of mafic dykes (Pb/Pb-single zircon: 1350 Ma) and older than the eclogite-facies metamorphism. High P/low T eclogite-facies metamorphism is bracketed by D1 and the intrusion of the Achmerovo granite (Pb/Pb-single zircon: ≤970 Ma). An extensional, sinistral, top-down-to-NW directed shearing (D2) is correlated with the first exhumation of the MCB. E-vergent folding and thrusting (D3) occurred at retrograde greenschist-facies metamorphic conditions. The tremolite 40Ar/39Ar cooling age (718±5 Ma) of amphibolitic eclogite and muscovite 40Ar/39Ar cooling ages (about 550 Ma) of mica schists indicate that a maximum temperature of 500±50 °C was not reached during the Neoproterozoic orogeny. The style and timing of the Neoproterozoic orogeny show similarities to the Cadomian-aged Timan Range NW of the Polar Urals. Geochronological and thermochronological data together with the abrupt change in structural style and metamorphism east of the Zuratkul fault, suggest that the MCB is exotic with respect to the SE-margin of the East European Platform. Thus, the MCB is named the ‘Beloretzk Terrane’. Recognition of the ‘Beloretzk Terrane’ and the Neoproterozoic orogeny at the eastern margin of Baltica has important implications for Neoproterozoic plate reconstruction and suggests that the eastern margin of Baltica might have lain close to the Avalonian–Cadomian belt.  相似文献   

5.
The geological, structural and tectonic evolutions of the Yenisey Ridge fold-and-thrust belt are discussed in the context of the western margin of the Siberian craton during the Neoproterozoic. Previous work in the Yenisey Ridge had led to the interpretation that the fold belt is composed of high-grade metamorphic and igneous rocks comprising an Archean and Paleoproterozoic basement with an unconformably overlying Mesoproterozoic–Neoproterozoic cover, which was mainly metamorphosed under greenschist-facies conditions. Based on the existing data and new geological and zircon U–Pb data, we recognize several terranes of different age and composition that were assembled during Neoproterozoic collisional–accretional processes on the western margin of the Siberian craton. We suggest that there were three main Neoproterozoic tectonic events involved in the formation of the Yenisey Ridge fold-and-thrust belt at 880–860 Ma, 760–720 Ma and 700–630 Ma. On the basis of new geochronological and petrological data, we propose that the Yeruda and Teya granites (880–860 Ma) were formed as a result of the first event, which could have occurred in the Central Angara terrane before it collided with Siberia. We also propose that the Cherimba, Ayakhta, Garevka and Glushikha granites (760–720 Ma) were formed as a result of this collision. The third event (700–630 Ma) is fixed by the age of island-arc and ophiolite complexes and their obduction onto the Siberian craton margin. We conclude by discussing correlation of these complexes with those in other belts on the margin of the Siberian craton.  相似文献   

6.
Carboniferous‐Permian volcanic complexes and isolated patches of Upper Jurassic — Lower Cretaceous sedimentary units provide a means to qualitatively assess the exhumation history of the Georgetown Inlier since ca 350 Ma. However, it is difficult to quantify its exhumation and tectonic history for earlier times. Thermochronological methods provide a means for assessing this problem. Biotite and alkali feldspar 40Ar/39Ar and apatite fission track data from the inlier record a protracted and non‐linear cooling history since ca 750 Ma. 40Ar/39Ar ages vary from 380 to 735 Ma, apatite fission track ages vary between 132 and 258 Ma and mean track lengths vary between 10.89 and 13.11 μm. These results record up to four periods of localised accelerated cooling within the temperature range of ~320–60°C and up to ~14 km of crustal exhumation in parts of the inlier since the Neoproterozoic, depending on how the geotherm varied with time. Accelerated cooling and exhumation rates (0.19–0.05 km/106 years) are observed to have occurred during the Devonian, late Carboniferous‐Permian and mid‐Cretaceous — Holocene periods. A more poorly defined Neoproterozoic cooling event was possibly a response to the separation of Laurentia and Gondwana. The inlier may also have been reactivated in response to Delamerian‐age orogenesis. The Late Palaeozoic events were associated with tectonic accretion of terranes east of the Proterozoic basement. Post mid‐Cretaceous exhumation may be a far‐field response to extensional tectonism at the southern and eastern margins of the Australian plate. The spatial variation in data from the present‐day erosion surface suggests small‐scale fault‐bounded blocks experienced variable cooling histories. This is attributed to vertical displacement of up to ~2 km on faults, including sections of the Delaney Fault, during Late Palaeozoic and mid‐Cretaceous times.  相似文献   

7.
Stratigraphic and structural correlations between the Palaeozoic massifs of eastern Morocco and northern Algeria allow three tectonic domains to be distinguished: (1) The cratonic zone, i.e. the West African platform which remained outside the Variscan chain and its peripherical margin (Moroccan Anti-Atlas and Algerian Ougarta); (2) a WSW-ENE trending zone, over 1500 km from Marrakech to Kabylia and Calabria (in their assumed Palaeozoic location). — This zone was characterized during the Late Palaeozoic by a continuous instability indicated by the development of successive turbiditic basins and a major orogeny at the Devonian-Carboniferous boundary; and (3) central and western Morocco, which corresponds to the external zones of the European Hercynides.The Marrakech-Kabylia zone separates the Variscan domain from the stable and undeformed West African craton. During Early Palaeozoic times it began as an extensive or transtensive zone. It has been deformed by the Late Devonian orogeny and by Carboniferous and Permian reactivation. The zone represents the southern limit of the Hercynian chain and is distinguished by its transcurrent regime throughout the Late Palaeozoic. Correspondence to: A. Piqué  相似文献   

8.
The southern and eastern Karkonosze-Izera massif (northern Bohemian Massif) exposes blueschist facies rocks and MORB-type magmatic complexes. During Late Devonian to Early Carboniferous times, these were overthrust within a nappe pile toward the NW onto the pre-Variscan Saxothuringian basement composed of the Izera-Kowary metagranitoids and their envelope. The lowermost nappe (or parautochthonous?) unit of the pile is the low-grade metamorphosed Jewt3d complex, comprising a Devonian to Early Carboniferous sedimentary succession of the Saxothuringian passive margin. This is tectonically overlain by the South Karkonosze complex, which represents Ordovician-Silurian volcano-sedimentary infill of the Saxothuringian basin, affected by Late Devonian HP metamorphism. The uppermost nappe is the Early Palaeozoic epidote-amphibolite grade Leszczyniec MORB-like complex, cropping out on the eastern margin of the Karkonosze-Izera massif. It probably represents a fragment of obducted Saxothuringian basin floor. The nappe pile was stacked beneath the overriding upper plate margin, now concealed below the Intra-Sudetic basin and hypothesized to represent a fragment of the Tepla-Barrandian terrane. The nappe stacking, triggered by buoyancy-controlled upward extrusion of the subducted continental slab, was the main mechanism for the exhumation of HP rocks. The final stages of the NW-ward nappe stacking were accompanied and followed by SE-directed Early Carboniferous extensional collapse. The lower plate of the suture zone was uplifted at that time and intruded by the ~330-Ma-old, nearly undeformed Karkonosze granite pluton. As a result of the collapse, the Tepla-Barrandian(?) upper plate was downthrown on shear zones and brittle faults and buried under several km-thick synorogenic Late Tournaisian(?) through Namurian and post-orogenic Late Carboniferous-Early Permian succession of the Intra-Sudetic basin. The south and east Karkonosze suture most probably is a fragment of the Tepla/Saxothuringian (Münchberg-Tepla) suture belt known from the western Bohemian Massif.  相似文献   

9.
The Donbas Foldbelt is part of the Prypiat–Dnieper–Donets intracratonic rift basin (Belarus–Ukraine–southern Russia) that developed in Late Devonian times and was reactivated in Early Carboniferous. To the southeast, the Donbas Foldbelt joins the contiguous, deformed Karpinsky Swell. Basin “inversions” led first to the uplift of the Palaeozoic series (mainly Carboniferous but also syn-rift Devonian strata in the southwesternmost part of the Donbas Foldbelt, which are deeply buried in the other parts of the rift system), and later to the formation of the fold-and-thrust belt. The general structural trend of the Donbas Foldbelt, formed mainly during rifting, is WNW–ESE. This is the strike of the main rift-related fault zones and also of the close to tight “Main Anticline” of the Donbas Foldbelt that developed along the previous rift axis. The Main Anticline is structurally unique in the Donbas Foldbelt and its formation was initiated in Permian times, during a period of (trans) tensional reactivation, during which active salt movements occurred. A relief inversion of the basin also took place at this time with a pronounced uplift of the southern margin of the basin and the adjacent Ukrainian Shield. Subsequently, Cimmerian and Alpine phases of tectonic inversion of the Donbas Foldbelt led to the development of flat and shallow thrusts commonly associated with folds into the basin. A fan-shaped deformation pattern is recognised in the field, with south-to southeast-vergent compressive structures, south of the Main Anticline, and north- to northwest-vergent ones, north of it. These compressive structures are clearly superimposed onto the WNW–ESE structural grain of the initial rift basin. Shortening structures that characterise the tectonic inversion of the basin are (regionally) orientated NW–SE and N–S. Because of the obliquity of the compressive trends relative to the WNW–ESE strike of inherited structures (major preexisting normal faults and the Main Anticline), in addition to reverse displacements, right lateral movements occurred along the main boundary fault zones and along the faulted hinge of the Main Anticline. The existence of preexisting structures is also thought to be responsible for local deviations in contractional trends (that are E–W in the southwesternmost part of the basin).  相似文献   

10.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   

11.
Combined analyses of Nd isotopes from a wide range of Neoarchaean–Cretaceous igneous rocks provides a proxy to study magmatic processes and the evolution of the lithosphere. The main igneous associations include the Neoproterozoic granitoids from the southern Brazilian shield, which were formed during two tectonothermal events of the Brasiliano cycle: the São Gabriel accretionary orogeny (900–700 Ma) and the Dom Feliciano collisional orogeny (660–550 Ma). Rocks related to the formation of the São Gabriel arc (900–700 Ma) mainly have a depleted juvenile signature. For the Neoproterozoic collisional event, the petrogenetic discussion focuses on two old crustal segments and three types of mantle components. However, no depleted juvenile material was involved in the formation of the Dom Feliciano collisional belt (800–550 Ma), which implies an ensialic environment for the Dom Feliciano orogeny. In the western Neoproterozoic foreland, records of a Neoarchaean lower crust predominate, whereas a Paleoproterozoic crust does in the eastern Dom Feliciano belt. The western foreland includes two amalgamated geotectonic domains, the São Gabriel arc and Taquarembó block. In the collisional belt, the old crust was intensely reworked during the São Gabriel event. In addition to the Neoproterozoic subduction-processed subcontinental lithosphere (São Gariel arc), we recognize two old enriched mantle components, which also are identified in the Paleoproterozoic intraplate tholeiites from Uruguay and the Cretaceous potassic suites from eastern Paraguay. One end member displays the prominent influence of Trans-Amazonian (2.3–2.0 Ga) or older subduction events, whereas the other can be interpreted as a reenrichment of the first during the latest Trans-Amazonian collisional or younger events. This reenriched mantle is documented in late Neoproterozoic suites from the western foreland (605–550 Ma) and younger suites from the eastern collisional belt (600–580 Ma). The other enriched mantle component with an old subduction signature, however, appears only in older rocks of the collisional belt (800–600 Ma). The participation of the subduction-related Brasiliano mantle as an end member of binary mixing occurred in some early Neoproterozoic suites (605–580 Ma) from the western foreland, but the contribution of the Neoarchaean lower crust increased near the late igneous event (575–550 Ma).  相似文献   

12.
Upper Devonian continental and subaqueous sedimentary rocks and bimodal volcanic rocks of the Boyd Volcanic Complex of the south coast of New South Wales were deposited in a rapidly subsiding, 330°‐trending, transtensional basin. Structural analysis of synvolcanic and synsedimentary deformational structures indicate that basin formation is related to a 330°‐orientated subhorizontal σ1 and a 060°‐orientated subhorizontal σ3, which account for the development of the observed intrusion and fracture orientations. Rhyolitic, basaltic and associated clastic dykes are preferentially intruded along extensional 330°‐trending fractures, subordinately along sinistral, transtensional 010°‐trending fractures and along 290°‐trending fractures. One of the implications of such a palaeotectonic reconstruction is that the so called north‐trending Eden‐Comerong‐Yalwal Late Devonian rift does not represent a simple, single palaeobasin entity, but is presently a north‐trending alignment of exposures of sedimentary and volcanic rocks probably emplaced in different basins or sub‐basins, mildly folded during the Carboniferous Kanimblan compression (which also formed the north‐trending Budawang synclinorium) and then extended to the east by the Tasman Sea opening during the Jurassic. The development of scattered, rapidly subsiding, basins characterised by bimodal volcanism during the Late Devonian throughout the Lachlan Fold Belt, can be interpreted in terms of extensional collapse of a forming mountain belt contemporaneous with a sharp decrease of compressional stress after the Middle Devonian Tabberabberan orogenic event. This would promote a reorientation of σ3 and transition from a compressional to a transtensional tectonic environment, which could also favour block rotation and formation of release basins.  相似文献   

13.
The Thomson Orogen forms the northwestern segment of the Tasman Orogenic Zone. It was a tectonically active area with several episodes of deposition, deformation and plutonism from Cambrian to Carboniferous time.Only the northeastern part of the orogen is exposed; the remainder is covered by gently folded Permian and Mesozoic sediments of the Galilee, Cooper and Great Artesian Basins. Information on the concealed Thomson Orogen is available from geophysical surveys and petroleum exploration wells which have penetrated the Permian and Mesozoic cover.The boundaries of the Thomson Orogen with other tectonic units are concealed, but discordant trends suggest that they are abrupt. To the west, the orogen is bordered by Proterozoic structural blocks which form basement west of the northeast-trending Diamantina River Lineament. The most appropriate boundary with the Lachlan and Kanmantoo Orogens to the south is an arcuate line marking a distinct change in the direction of gravity trends. The north-northwest orientation of the northern part of the New England Orogen to the east cuts strongly across the dominant northeast trend of the Thomson Orogen.The Thomson Orogen developed as a tectonic entity in latest Proterozoic or Early Cambrian time when the former northern extension of the Adelaide Orogen * was truncated along the Muloorinna Ridge. Early Palaeozoic deposition was dominated by finegrained, quartz-rich clastic sediments. Cambrian carbonates accumulated in the southwest and a Cambro-Ordovician island arc was active in the north. Along the western margin of the orogen, sediments were probably laid down on downfaulted blocks of deformed Proterozoic rocks, with oceanic crust further to the east.A mid- to Late Ordovician orogeny which affected the whole of the Thomson Orogen marked the climax of its precratonic (orogenic) stage. The northeast structural trend of the orogen (parallel to its western boundary with the Precambrian craton) was imposed at this time and has controlled the orientation of later folding and faulting. Up to three generations of folding have been recognized and fine-grained metasediments exhibit a prominent slaty cleavage. Metamorphism was to the greenschist and amphibolite facies, the highest grade rocks being associated with synorogenic granodiorite batholiths in the north. Following deposition of Late Ordovician marine sediments at the eastern margin, emplacement of post-tectonic Late Silurian or Early Devonian batholiths ended the precratonic history of the Thomson Orogen.The subsequent transitional tectonic regime was characterized by deposition of Devonian to Early Carboniferous shallow marine and continental sediments including widespread red-beds and andesitic volcanics. The maximum marine transgression occurred in the early Middle Devonian. Localized folding affected the easternmost part of the Thomson Orogen at the end of Middle Devonian time and was followed by intrusion of Devono-Carboniferous granitic plutons. However, the terminal orogeny which deformed all Devonian to Early Carboniferous rocks of the orogen was of mid-Carboniferous age. It produced northeast-trending open folds and normal and high-angle reverse faults which are considered to reflect basement structures. The cratonization of the Thomson Orogen was completed with the emplacement of Late Carboniferous granites and the eruption of comagmatic volcanics in the northeast, permian and Mesozoic sediments accumulated in broad, relatively shallow down warps which covered most of the former orogen.  相似文献   

14.
The Armorican Massif (western France) provides an excellent record of the Palaeozoic history of the Variscan belt. Following the Late Neoproterozoic Cadomian orogeny, the Cambro-Ordovician rifting was associated with oceanic spreading. The Central- and North-Amorican domains (which together constitute the core of the Armorica microplate) are bounded by two composite suture zones. To the north, the Léon domain (correlated with the “Normannian High” and the “Mid-German Crystalline Rise” in the Saxo-Thuringian Zone) records the development of a nappe stack along the northern suture zone, and was backthrusted over the central-Armorican domain during the Carboniferous. To the south, an intermediate block (“Upper Allochthon”) records a complex, polyorogenic history, with an early high-temperature event followed by the first generation of eclogites (Essarts). This intermediate block overthrusts to the north the Armorica microplate (Saint-Georges-sur-Loire), to the south: (i) relics of an oceanic domain; and (ii) the Gondwana palaeomargin. The collision occurred during a Late Devonian event, associated with a second generation of eclogites (Cellier).  相似文献   

15.
The western Blue Ridge allochthon of the southern Appalachians is dominated by the >180 km-long Murphy synclinorium, paired with anticlinoria to the northwest. These are first generation, northwest overturned, doubly plunging, large amplitude and wavelength (>10 km) isoclinal folds contemporaneous with peak Neo-Acadian orogeny (Visian, ∼335–345 Ma) regional metamorphism. The synclinorium folds a regional unconformity separating Neoproterozoic rift and lower Paleozoic drift sequences from a younger successor-basin sequence. Strain analysis of metaconglomerates from lithologic groups above and below the unconformity indicates coaxial, low to moderate, oblate to nearly plane strain in both groups. The synclinorium evolved via NNW-SSE-crustal shortening (∼32%), combined with orthogonal NNE-SSW-sub-horizontal flow (stretching) (∼35–45%) sub-parallel to the developing fold axes. Differences in metamorphic grade and paleodepth (∼10–17 km) of the exposed synclinorium had essentially no effect on strain magnitudes. Retrodeformation of the embedded regional unconformity reveals a very broad synclinal warping of the rift and drift-facies units predating superposition of the Murphy synclinorium, suggesting tectonic inheritance in the latter structure's origin. The earlier mild deformation is post-Early Cambrian and may represent the only vestige of the dynamic effects of the Middle Ordovician Taconic orogeny to be found in this region.  相似文献   

16.
This study of metallogeny of the Urals is strongly tied up with a stage-by-stage geodynamic analysis of the orogen. The analysis includes a revised understanding of geodynamic development of the Timanides (development of a deep sedimentary basin since the Mesoproterozoic, ocean formation and subduction in the Neoproterozoic and collision in the Late Ediacaran). For the Uralides, a new interpretation includes relationships between Tagil and Magnitogorsk arcs, arc–continent collision in the Late Devonian, subduction jump in the Early Carboniferous, and thrust stacking in the Late Carboniferous to Permian. Attention is paid to metallogeny of the platform (Middle Jurassic to Paleogene) and neo-orogenic (late Cenozoic) stages. For the first time an effort is made to consider the role of mantle plumes and superplumes in the geodynamic development and metallogeny of this fold belt. Many deposits are polygenetic, and different stages of their formation belong to different geodynamic stages and substages, therefore the deposits becoming additional geodynamic indicators themselves.  相似文献   

17.
The low-temperature thermal history of Paleozoic and Precambrian shales and slates was studied in detail along a NW–SE transect between Ufa and Beloretzk in the western fold-and-thrust belt of the southern Urals, Russia. The aim of the investigations was to compare four thermal parameters, namely illite and chlorite crystallinity, vitrinite reflectance, and Conodont color alteration index (CAI), in order to quantify the finite (i.e. maximum) thermal grade. The transect extends from Devonian to Permian sedimentary units of the pre-Uralian foredeep, crossing Precambrian siliciclastic and carbonate units of the Bashkirian megaanticlinorium into the Paleozoic units of the Ural-Tau antiform. In general, the four methods indicate similar metamorphic grades of the samples. The finite thermal grade ranges from lower diagenesis (Ro=0.9%, CIS-FWHMill001ad=0.770 Δ°2Θ, CIS-FWHMchl002ad=0.447 Δ°2Θ, CAI=1.5) in the pre-Uralian foredeep to epizone (CIS-FWHMill001ad=0.243 Δ°2Θ, CIS-FWHMchl002ad=0.252 Δ°2Θ, CAI=6) in the eastern part of the Bashkirian mega-anticlinorium and the Zilair synclinorium. All parameters show a sudden change in value at thrust boundaries and an increase in metamorphic grade with stratigraphic age within structural units. In comparison, the westernmost Precambrian units of the Ala-Tau-anticlinorium are characterized by thermal grades of lower diagenesis. Magmatic dikes cause a wide variation of the thermal grade in the western part of the Bashkirian megaanticlinorium. Also in areas with an intensive cleavage development (Zilair synclinorium) the finite thermal grade shows a stronger relationship towards the deformation than the stratigraphic position.  相似文献   

18.
《Comptes Rendus Geoscience》2008,340(2-3):151-165
This paper provides some new evidences on stratigraphic sequence, zircon SHRIMP dating from ophiolite, granitoids, and fold-and-thrust tectonic styles in the South China Block (SCB). Stratigraphic studies suggest that the eastern and central parts of the SCB show a SW-dipping palaeoslope framework during the Late Palaeozoic–Early Mesozoic. These areas were not in a deep-sea environment, but in a shallow-sea or littoral one. Coeval volcanic rocks are missing. Deep-water deposits and submarine volcanism only took place in the western part of the SCB. The three ophiolitic mélanges of the eastern SCB formed in the Neoproterozoic, but not in the Permian or the Triassic. The sedimentary rocks associated with the Neoproterozoic oceanic relics contain abundant Proterozoic acritarchs, but no radiolarians. The Early Mesozoic granitoids (235–205 Ma) belong to the post-collision peraluminous S-type granites; they are widely exposed in the central-western SCB, and rare in the eastern SCB. The fold-and-thrust belt developed in the eastern SCB shows a top-to-the-south displacement, whereas the Xuefengshan Belt of central SCB indicates a north- or northwest-directed shearing. The geodynamic settings of the different parts of the SCB during the Triassic are discussed.  相似文献   

19.
晚加里东到早海西期,西秦岭北带存在一较大规模的造山带,泥盆纪的古地形呈北高南低的特下。持续的海侵由南向北侵进。中泥盆世由于北秦岭造山带的向南爷冲,形成同造山的前陆拗陷盆地。南秦岭裂陷槽是早古生代小洋盆的残余海槽。  相似文献   

20.
李忠  高剑 《古地理学报》2016,18(3):424-440
完整认识盆山沉积系统,这是古地理重建研究的必然趋势,其中从构造稳定区到构造活动区的特征源汇体系解析是重要环节。塔里木块体北缘活动区存在与“泛非”造山事件有关的岩浆和变质记录,但与这一特征构造-热事件有关的碎屑沉积记录以往在塔里木块体北缘及邻区却鲜有报道。主要针对塔里木块体北缘泥盆纪-石炭纪砂岩样品,文中开展了碎屑锆石原位地质年代学分析,结果表明下石炭统野云沟组砂岩碎屑锆石U-Pb年龄以新元古代中-晚期为主体,与“泛非”造山事件的持续时间较为一致,且此类沉积记录在该地区也是首次大量发现。相应的碎屑锆石的εHf(t)值几乎全为负值,是古老陆壳熔融的产物。而野云沟组之下和之上的砂岩碎屑锆石均无“泛非”造山事件的明显信息。研究认为,泥盆纪南天山洋向南俯冲,导致塔里木块体北缘发育岛弧体系;至早石炭世维宪早期南天山洋盆闭合,相关块体拼贴-碰撞作用致使该区构造古地理转变,与“泛非”造山作用有关的结晶基底隆升和剥露,并成为野云沟组主要物源。晚石炭世随海平面上升和沉积超覆,塔里木块体北缘与“泛非”造山事件有关的结晶基底剥露终止。综合对比区域碎屑锆石U-Pb年代学数据发现,研究区其他显生宙地层中(除上奥统桑塔木组外)均未记录到明显的与“泛非”造山事件物源相关的碎屑沉积,可能说明现存的塔里木块体受“泛非”造山构造-热事件影响的范围有限,另一方面也说明相关基底岩石的剥露主要出现在早石炭世以及晚奥陶世。这些信息的揭示对于认识塔里木块体北部古生代古地貌、碎屑源汇体系与构造古地理具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号