首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Darrell F. Strobel 《Icarus》2008,193(2):612-619
Hydrodynamic escape of N2 molecules from Pluto's atmosphere is calculated under the assumption of a high density, slow outflow expansion driven by solar EUV heating by N2 absorption, near-IR and UV heating by CH4 absorption, and CO cooling by rotational line emission as a function of solar activity. At 30 AU, the N2 escape rate varies from in the absence of heating, but driven by an upward thermal heat conduction flux from the stratosphere, for lower boundary temperatures varying from 70-100 K. With solar heating varying from solar minimum to solar maximum conditions and a calculated lower boundary temperature, 88.2 K, the N2 escape rate range is , respectively. LTE rotational line emission by CO reduces the net solar heat input by at most 35% and plays a minor role in lowering the calculated escape rates, but ensures that the lower boundary temperature can be calculated by radiative equilibrium with near-IR CH4 heating. While an upward thermal conduction heat flux at the lower boundary plays a fundamental role in the absence of heating, with solar heating it is downward at solar minimum, and is, at most, 13% of the integrated net heating rate over the range of solar activity. For the arrival of the New Horizons spacecraft at Pluto in July 2015, predictions are lower boundary temperature, T0∼81 K, and N2 escape rate , and peak thermospheric temperature ∼103 K at 1890 km, based on expected solar medium conditions.  相似文献   

6.
Energy transfer from electrons to neutral gases and ions is one of the dominant electron cooling processes in the ionosphere, and the role of vibrationally excited N2 in this is particularly significant. We report here the results from a new calculation of electron energy transfer rates (Q) for vibrational excitation of N2, as a function of the electron temperature Te. The present study was motivated by the development of a new cross-section compilation for vibrational excitation processes in N2 which supercedes those used in the earlier calculations of the electron energy transfer rates. We show that the energy dependence and magnitude of these cross sections, particularly in the region of the well-known resonance in N2, significantly affect the calculated values of Q. A detailed comparison between the current and previous calculated electron energy transfer rates is made and coefficients are provided so that these rates for transitions from level 0 to levels 1-10 can be calculated for electron temperatures less than .  相似文献   

7.
Measurements of the vertical and latitudinal variations of temperature and C2H2 and C2H6 abundances in the stratosphere of Saturn can be used as stringent constraints on seasonal climate models, photochemical models, and dynamics. The summertime photochemical loss timescale for C2H6 in Saturn's middle and lower stratosphere (∼40-10,000 years, depending on altitude and latitude) is much greater than the atmospheric transport timescale; ethane observations may therefore be used to trace stratospheric dynamics. The shorter chemical lifetime for C2H2 (∼1-7 years depending on altitude and latitude) makes the acetylene abundance less sensitive to transport effects and more sensitive to insolation and seasonal effects. To obtain information on the temperature and hydrocarbon abundance distributions in Saturn's stratosphere, high-resolution spectral observations were obtained on September 13-14, 2002 UT at NASA's IRTF using the mid-infrared TEXES grating spectrograph. At the time of the observations, Saturn was at a LS≈270°, corresponding to Saturn's southern summer solstice. The observed spectra exhibit a strong increase in the strength of methane emission at 1230 cm−1 with increasing southern latitude. Line-by-line radiative transfer calculations indicate that a temperature increase in the stratosphere of ≈10 K from the equator to the south pole between 10 and 0.01 mbar is implied. Similar observations of acetylene and ethane were also recorded. We find the 1.16 mbar mixing ratio of C2H2 at −1° and −83° planetocentric latitude to be and , respectively. The C2H2 mixing ratio at 0.12 mbar is found to be at −1° planetocentric latitude and at −83° planetocentric latitude. The 2.3 mbar mixing ratio of C2H6 inferred from the data is and at −1° and −83° planetocentric latitude, respectively. Further observations, creating a time baseline, will be required to completely resolve the question of how much the latitudinal variations of C2H2 and C2H6 are affected by seasonal forcing and/or stratospheric circulation.  相似文献   

8.
9.
10.
11.
Molecular oxygen produced by the decomposition of icy surfaces is ubiquitous in Saturn's magnetosphere. A model is described for the toroidal O2 atmosphere indicated by the detection of and O+ over the main rings. The O2 ring atmosphere is produced primarily by UV photon-induced decomposition of ice on the sunlit side of the ring. Because O2 has a long lifetime and interacts frequently with the ring particles, equivalent columns of O2 exist above and below the ring plane with the scale height determined by the local ring temperature. Energetic particles also decompose ice, but estimates of their contribution over the main rings appear to be very low. In steady state, the O2 column density over the rings also depends on the relative efficiency of hydrogen to oxygen loss from the ring/atmosphere system with oxygen being recycled on the grain surfaces. Unlike the neutral density, the ion densities can differ on the sunlit and shaded sides due to differences in the ionization rate, the quenching of ions by the interaction with the ring particles, and the northward shift of the magnetic equator relative to the ring plane. Although O+ is produced with a significant excess energy, is not. Therefore, should mirror well below those altitudes at which ions were detected. However, scattering by ion-molecule collisions results in much larger mirror altitudes, in ion temperatures that go through a minimum over the B-ring, and in the redistribution of both molecular hydrogen and oxygen throughout the magnetosphere. The proposed model is used to describe the measured oxygen ion densities in Saturn's toroidal ring atmosphere and its hydrogen content. The oxygen ion densities over the B-ring appear to require either significant levels of UV light scattering or ion transmission through the ring plane.  相似文献   

12.
13.
14.
15.
16.
17.
18.
We have performed high-resolution spectral observations at mid-infrared wavelengths of C2H6 (12.16 μm), and C2H2 (13.45 μm) on Saturn. These emission features probe the stratosphere of the planet and provide information on the hydrocarbon photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer Celeste, in conjunction with the McMath-Pierce 1.5-m solar telescope in November and December 1994. We used Voyager IRIS CH4 observations (7.67 μm) to derive a temperature profile on the saturnian atmosphere for the region of the stratosphere. This profile was then used in conjunction with height-dependent volume mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. Our ground-based measurements indicate abundances of for C2H6 (1.0 mbar pressure level), and for C2H2 (1.6 mbar pressure level). We also derived new mixing ratios from the Voyager mid-latitude IRIS observations; 8.6±0.9×10−6 for C2H6 (0.1-3.0 mbar pressure level), and 1.6±0.2×10−7 for C2H2 (2.0 mbar pressure level).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号