首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of rare earth elements (REE) between clinopyroxene (cpx) and basaltic melt is important in deciphering the processes of mantle melting. REE and Y partition coefficients from a given cpx-melt partitioning experiment can be quantitatively described by the lattice strain model. We analyzed published REE and Y partitioning data between cpx and basaltic melts using the nonlinear regression method and parameterized key partitioning parameters in the lattice strain model (D 0, r 0 and E) as functions of pressure, temperature, and compositions of cpx and melt. D 0 is found to positively correlate with Al in tetrahedral site (Al T ) and Mg in the M2 site (MgM2) of cpx and negatively correlate with temperature and water content in the melt. r 0 is negatively correlated with Al in M1 site (AlM1) and MgM2 in cpx. And E is positively correlated with r 0. During adiabatic melting of spinel lherzolite, temperature, Al T , and MgM2 in cpx all decrease systematically as a function of pressure or degree of melting. The competing effects between temperature and cpx composition result in very small variations in REE partition coefficients along a mantle adiabat. A higher potential temperature (1,400°C) gives rise to REE partition coefficients slightly lower than those at a lower potential temperature (1,300°C) because the temperature effect overwhelms the compositional effect. A set of constant REE partition coefficients therefore may be used to accurately model REE fractionation during partial melting of spinel lherzolite along a mantle adiabat. As cpx has low Al and Mg abundances at high temperature during melting in the garnet stability field, REE are more incompatible in cpx. Heavy REE depletion in the melt may imply deep melting of a hydrous garnet lherzolite. Water-dependent cpx partition coefficients need to be considered for modeling low-degree hydrous melting.  相似文献   

2.
This paper reports experiments carried out at 1-atm under conditions of controlled oxygen fugacity, using natural andesites and andesite mixed with augite+synthetic pigeonite or augite+orthopyroxene. The experimental results are used (1) to investigate the controls of Mg# (Mg/[Mg+Fe2+]) and temperature on low-Ca pyroxene stability (pigeonite vs orthopyroxene), (2) to quantify the effects of variations in bulk composition on the position of multiple saturation boundaries in mineral component projection schemes and (3) to develop a thermodynamic model for silica activity for melts saturated with olivine and pyroxene. Over the Mg# range of 0.80–0.30 the minimum temperature of pigeonite stability in natural compositions is equivalent to the Lindsley (1983) boundary determined for pure Ca-Mg-Fe pigeonites. For the low variance, 5-phase assemblage oliv-aug-low-Ca pyroxene-plag-liquid, expressions involving liquid (Na2O+K2O)/(Na2O+K2O+CaO),Mg# and TiO2 content predict temperature and the movement of multiple saturation boundaries in pseudoternary projections in response to changing melt composition. The equilibrium for the low pressure melting of low-Ca pyroxene to olivine+liquid is formulated as a geothermometer and monitor of silica activity. Equilibrium constants estimated from thermochemical data and activities calculated for experimentally produced olivine and pyroxenes are used to develop a model for silica activity in liquid.  相似文献   

3.
Our current lack of understanding of the partitioning behavior of Sc, Y and the REE (rare-earth elements) can be attributed directly to the lack of a sufficiently large or chemically diverse experimental data set. To address this problem, we conducted a series of experiments using several different natural composition lavas, doped with the elements of interest, as starting compositions. Microprobe analyses of orthopyroxene, pigeonite, olivine, magnetite, ilmenite and co-existing glasses in the experimental charges were used to calculate expressions that describe REE partitioning as a function of a variety of system parameters. Using expressions that represent mineral-melt reactions (versus element ratio distribution coefficients) it is possible to calculate terms that express low-Ca pyroxene-melt partitioning behavior and are independent of both pyroxene and melt composition. Compositional variations suggest that Sc substitution in olivine involves either a paired substitution with Al or, more commonly, with vacancies. The partitioning of Sc is dependent both on melt composition and temperature. Our experimentally determined olivine-melt REE Ds (partition coefficients) are similar to, but slightly higher than those reported by McKay (1986) and support their conclusions that olivines are strongly LREE depleted. Y and REE mineral/melt partition coefficients for magnetite range from 0.003 for La to 0.02 for Lu. Ilmenite partition coefficients range from 0.007 for La to 0.029 for Lu. These experimental values are two orders of magnitude lower than many of the published values determined by phenocryst/matrix separation techniques.  相似文献   

4.
Interaction between basaltic melts and peridotites has played an important role in modifying the lithospheric and asthenospheric mantle during magma genesis in a number of tectonic settings. Compositions of basaltic melts vary considerably and may play an important role in controlling the kinetics of melt–peridotite interaction. To better understand the effect of melt composition on melt–peridotite interaction, we conducted spinel lherzolite dissolution experiments at 2 GPa and 1,425 °C using the dissolution couple method. The reacting melts include a basaltic andesite, a ferro-basalt, and an alkali basalt. Dissolution of lherzolite in the basaltic andesite and the ferro-basalt produced harzburgite–lherzolite sequences with a thin orthopyroxenite layer at the melt–harzburgite interface, whereas dissolution of lherzolite in the alkali basalt produced a dunite–harzburgite–lherzolite sequence. Systematic variations in mineral compositions across the lithological units are observed. These mineral compositional variations are attributed to grain-scale processes that involve dissolution, precipitation, and reprecipitation and depend strongly on reacting melt composition. Comparison of mineral compositional variations across the dissolution couples with those observed in mantle xenoliths from the North China Craton (NCC) helps to assess the spatial and temporal variations in the extent of siliceous melt and peridotite interaction in modifying the lithospheric mantle beneath the NCC. We found that such melt–rock interaction mainly took place in Early Cretaceous, and is responsible for the enrichment of pyroxene in the lithospheric mantle. Spatially, siliceous melt–peridotite interaction took place in the ancient orogens with thickened lower crust.  相似文献   

5.
西藏雅鲁藏布江缝合带东段泽当地幔橄榄岩特征及其意义   总被引:1,自引:1,他引:0  
泽当岩体位于雅鲁藏布江缝合带东段,主要由地幔橄榄岩、辉长辉绿岩和基性火山岩等组成。地幔橄榄岩主要为方辉橄榄岩和二辉橄榄岩,有少量透镜状纯橄岩。地幔橄榄岩经历了强烈的塑性变形作用。地幔橄榄岩中橄榄石的Fo值为89.6~91.8,属镁橄榄石;斜方辉石为顽火辉石,En 87.8~90.3;单斜辉石En 44.1~50.0,主要为顽透辉石和透辉石。铬尖晶石的Cr#值(=100×Cr/(Cr+Al))为17.0~93.6,其中,二辉橄榄岩和方辉橄榄岩中的铬尖晶石为富铝型尖晶石,纯橄岩中的铬尖晶石Cr#最高,为富铬型尖晶石。地幔橄榄岩的部分熔融程度为17%~34%,表明泽当地幔橄榄岩可能经历了多阶段的过程。亏损的主量元素组成和低于原始地幔的稀土元素含量(0.15×10-6~0.61×10-6)指示泽当地幔橄榄岩为经历过部分熔融和熔体抽取的亏损残余地幔岩石。REE配分型式为中稀土亏损的"V"型或"U"型,原始地幔标准化元素比值(La/Sm)N为0.5~8.0,表明泽当地幔橄榄岩经历过交代作用。矿物化学与地球化学数据表明泽当地幔橄榄岩形成于MOR环境,后受到SSZ环境的改造。  相似文献   

6.
Olivine/melt and orthopyroxene/melt rare-earth element (REE) partition coefficients consistent with clinopyroxene/melt partition coefficients were determined indirectly from subsolidus partitioning between olivine, orthopyroxene, and clinopyroxene after suitable correction for temperature. Heavy- and middle-REE ratios for olivine/clinopyroxene and orthopyroxene/clinopyroxene pairs correlate negatively with effective cationic radius, whereas those for the light REEs correlate positively with cationic radius, generating a U-shaped pattern in apparent mineral/clinopyroxene partition coefficients versus cationic radius. Lattice strain models of partitioning modified for subsolidus conditions yield negative correlations of olivine/clinopyroxene and orthopyroxene/clinopyroxene with respect to cationic radii, predicting well the measured partitioning behaviors of the heavy and middle REEs but not that of the light REEs. The light-REE systematics cannot be explained with lattice strain theory and, instead, can be explained by disequilibrium enrichment of the light REEs in melt inclusions or on the rims of olivine and orthopyroxene. Realistic light-REE partition coefficients were thus extrapolated from the measured heavy- and middle-REE partition coefficients using the lattice strain model. Light REE olivine/melt and orthopyroxene/melt partition coefficients calculated in this manner are lower than most published values, but agree reasonably well with partitioning experiments using the most recent in situ analytical techniques (secondary-ionization mass spectrometry and laser ablation inductively coupled plasma mass spectrometry). These new olivine/melt and orthopyroxene/melt partition coefficients are useful for accurate modeling of the REE contents of clinopyroxene-poor to -free lithologies, such as harzburgitic residues of melting. Finally, the application of the lattice strain theory to subsolidus conditions represents a framework for assessing the degree of REE disequilibrium in a rock.  相似文献   

7.
REE partition data between solid phases in nine spinel peridotite xenoliths from Assab (Ethiopia) are presented together with bulk-rock REE composition. REE partitioning between clinopyroxene and other coexisting solid phases varies over a relatively wide range. The largest ranges are for LREE in clinopyroxene/orthopyroxene and clinopyroxene/olivine pairs, while clinopyroxene/spinel partitioning of REE is more restricted. The range of REE partition values between coexisting phases is due to compositional dependency effects and is correlated with systematic variations in major element composition of the bulk rocks. The measured REE concentration in the Assab mantle harzburgites do not match with the compositions calculated by mass balance from the modal proportions and REE analyses in individual phases. Inconsistencies for HREE may be due to variable HREE amounts in the clinopyroxene, orthopyroxene phases within a single specimen, while the high LREE contents in the whole rocks are due to contamination during transport to the surface. A geochemical model based on theoretical treatment of the REE partition data suggests that the Assab harzburgites acquired their residual character during a batch melting episode in the upper mantle under the Afar region.  相似文献   

8.
The kinetics of lherzolite dissolution in an alkali basalt and a basaltic andesite was examined experimentally at 1,300°C and 1 GPa using the dissolution couple method. Dissolution of lherzolite in basaltic liquids produces either the melt-bearing dunite–harzburgite–lherzolite (DHL) sequence or the melt-bearing harzburgite–lherzolite sequence depending on whether the reacting melt is or close to olivine saturation (alkali basalt) or olivine + orthopyroxene saturation (basaltic andesite). The dunite in the DHL sequence is pyroxene-free and the harzburgites in both sequences are clinopyroxene-free. The melt fraction and olivine grain size in the dunite are larger than those in the harzburgite. The olivine grain size in the dunite and harzburgite in the DHL sequence also increases as a function experimental run time. Across the sharp dunite–harzburgite and harzburgite–lherzolite interfaces, systematic compositional variations are observed in the reacting melt, interstitial melt, olivine, and to a lesser extent, pyroxenes as functions of distance and time. The systematic variations in lithology, grain size, mineral chemistry, and melt compositions are broadly similar to those observed in the mantle sections of ophiolites. The processes of lherzolite dissolution in basaltic liquids involve dissolution, precipitation, reprecipitation, and diffusive transport in the interstitial melts and surrounding minerals. Preferential dissolution of olivine and clinopyroxene and precipitation of orthopyroxene in the basaltic andesite produces the melt-bearing harzburgite–lherzolite sequence. Preferential dissolution of clinopyroxene and orthopyroxene and precipitation of olivine results in the melt-bearing DHL sequence. Preferential mineral dissolution can also affect the composition of the through-going melt in a dunite channel or harzburgite matrix. Systematic variations in melt fraction and mineral grain size in the peridotite sequences are likely to play an important role in the development of channelized or diffuse porous melt flow in the mantle.An erratum to this article can be found at  相似文献   

9.
The Red Hills peridotite in the Dun Mountain ophiolite of SouthIsland, New Zealand, is assumed to have been produced in a paleo-mid-oceanridge tectonic setting. The peridotite is composed mostly ofharzburgite and dunite, which represent residual mantle andthe Moho transition zone (MTZ), respectively. Dunite channelswithin harzburgite blocks of various scales represent the MTZcomponent. Plagioclase- and clinopyroxene-bearing dunites occursporadically within common dunites. These dunites representproducts of melt–wall-rock interaction. Chondrite-normalizedrare earth element (REE) patterns of MTZ clinopyroxenes showa wide compositional range. Clinopyroxenes in plagioclase dunitesare extremely depleted in light REE (LREE) ([Lu/La]N >100),and are comparable with clinopyroxenes in abyssal peridotitesfrom normal mid-ocean ridges. Interstitial clinopyroxenes inthe common dunite have flatter patterns ([Lu/La]N 2) comparablewith those for dunite in the Oman ophiolite. Clinopyroxenesin the lower part of the residual mantle harzburgites are evenmore strongly depleted in LREE ([Lu/La]N = 100–1000) thanare mid-ocean ridge peridotites, and rival the most depletedabyssal clinopyroxenes reported from the Bouvet hotspot. Incontrast, those in the uppermost residual mantle harzburgiteand harzburgite blocks in the MTZ are less LREE depleted ([Lu/La]N= 10–100), and are similar to those in plagioclase dunite.Clinopyroxenes in the clinopyroxene dunite in the MTZ are similarto those reported from mid-ocean ridge basalt (MORB) cumulates,and clinopyroxenes in the gabbroic rocks have compositions similarto those reported from MORB. Strong LREE and middle REE (MREE)depletion in clinopyroxenes in the harzburgite suggests thatthe harzburgites are residues of two-stage fractional melting,which operated initially in the garnet field, and subsequentlycontinued in the spinel lherzolite field. The early stage meltingproduced the depleted harzburgite. The later stage melting wasresponsible for the gabbroic rocks and dunite. Strongly LREE–MREE-depletedclinopyroxene in the lower harzburgite and HREE-enriched clinopyroxenein the upper harzburgite and plagioclase dunite were formedby later reactive melt migration occurring in the harzburgite. KEY WORDS: clinopyroxene REE geochemistry; Dun Mountain ophiolite; Moho transition zone; orogenic peridotite; Red Hills  相似文献   

10.
Peridotite samples recovered from IODP Site U1309 at the Atlantis Massif in the Mid-Atlantic Ridge were examined to understand magmatic processes for the oceanic core complex formation. Original peridotite was fragmented, and the limited short peridotite intervals are now surrounded by a huge gabbro body probably formed by late-stage melt injections. Each peridotite interval has various petrographical and geochemical features. A spinel harzburgite in contact with gabbro shows evidence of limited melt penetrations causing gradual compositional change, in terms of trace-element compositions of pyroxenes, as well as modal change near the boundary. Geochemistry of clinopyroxenes with least melt effects indicates that the harzburgite is originally mantle residue formed by partial melting under polybaric conditions, and that such a depleted peridotite is one of the components of the oceanic core complex. Some of plagioclase-bearing peridotites, on the other hand, have more complicated origin. Although their original features were partly overprinted by the injected melt, the original peridotites, both residual and non-residual materials, were possibly derived from the upper mantle. This suggests that the melt injected around an upper mantle region or into mantle material fragments. The injected melt was possibly generated at the ridge-segment center and, then, moved and evolved toward the segment end beneath the oceanic core complex.  相似文献   

11.
We present results of a secondary ion mass spectrometry study of the rare earth elements (REEs) in the minerals of two samples of lunar ferroan anorthosite, and the results are applicable to studies of REEs in all igneous rocks, no matter what their planet of origin. Our pyroxene analyses are used to determine solid-solid REE distribution coefficients (D = CREE in low-Ca pyroxene/CREE in augite) in orthopyroxene-augite pairs derived by inversion of pigeonite. Our data and predictions from crystal-chemical considerations indicate that as primary pigeonite inverts to orthopyroxene plus augite and subsolidus reequilibration proceeds, the solid-solid Ds for orthopyroxene-augite pairs progressively decrease for all REEs; the decrease is greatest for the LREEs. The REE pattern of solid-solid Ds for inversion-derived pyroxene pairs is close to a straight line for Sm-Lu and turns upward for REEs lighter than Sm; the shape of this pattern is predicted by the shapes of the REE patterns for the individual minerals.Equilibrium liquids calculated for one sample from the compositions of primary phases, using measured or experimentally determined solid-liquid Ds, have chondrite-normalized REE patterns that are very slightly enriched in LREEs. The plagioclase equilibrium liquid is overall less rich in REEs than pyroxene equilibrium liquids, and the discrepancy probably arises because the calculated plagioclase equilibrium liquid represents a liquid earlier in the fractionation sequence than the pyroxene equilibrium liquids. “Equilibrium” liquids calculated from the compositions of inversion-derived pyroxenes or orthopyroxene derived by reaction of olivine are LREE depleted (in some cases substantially) in comparison with equilibrium liquids calculated from the compositions of primary phases. These discrepancies arise because the inversion-derived and reaction-derived pyroxenes did not crystallize directly from liquid, and the use of solid-liquid Ds is inappropriate. The LREE depletion of the calculated liquids is a relic of formation of these phases from primary LREE-depleted minerals. Thus, if one attempts to calculate the compositions of equilibrium liquids from pyroxene compositions, it is important to establish that the pyroxenes are primary. In addition, our data suggest that experimental studies have underestimated solid-liquid Ds for REEs in pigeonite and that REE contents of liquids calculated using these Ds are overestimates.Our results have implications for Sm-Nd age studies. Our work shows that if pigeonite inversion and/or subsolidus reequilibration between augite and orthopyroxene occurred significantly after crystallization, and if pyroxene separates isolated for Sm-Nd studies do not have the bulk composition of the primary pyroxenes, then the Sm-Nd isochron age and εNd will be in error.  相似文献   

12.
Melting of the Shallow Upper Mantle: A New Perspective   总被引:4,自引:3,他引:4  
Detailed examination of liquidus phase relationships in binaryand ternary joins of the CFMAS +Cr system has permitted a rigorousdetermination of the dry melting path of an initially fertilespinel peridotite composition resembling Bulk Silicate Earthor MORB-pyrolite. It is demonstrated that it is impossible tomodel mantle melting accurately using only one set of ratiosof phases entering the melt; this implies that the melting processis primarily controlled by solid solution rather than eutecticbehaviour. The proportions of phases entering a melt dependon whether a phase reacts and/or disappears from a system, andon the choice of the initial and final peridotite compositions.Four discrete domains in the melting regime of upper-mantleperidotites are distinguished, each characterized by differentphase melting coefficients, relating to the melting of: (1)lherzolites, (2) clinopyroxene-bearing harzburgites (i.e., free-clinopyroxene),(3) clinopyroxene-saturated harzburgites (i.e., clinopyroxenein solid solution in orthopyroxene), and (4) clinopyroxene-freeharzburgites (i.e., no clinopyroxene). The proposed non-linearfashion in which mantle lithologies melt explains the inadequacyof all previous models to reproduce the observed compositionsof upper-mantle peridotite melting residues. It is suggestedthat: (1) olivine and orthopyroxene will melt cotectically;(2) clinopyroxene and spinel will lose most of their aluminouscomponent after {small tilde}8% melting within the first 4 kb({smalltilde} 12 km) of ascent from the dry solidus; and that (3) clinopyroxenewill disappear completely from a MORB-pyrolite mantle after{small tilde}42% melting. Although such a number is significantlyhigher than that dictated by the position of the clinopyroxene-outcurves from peridotite isobaric equilibrium melting experiments({small tilde}22%), it is emphasized that the latter are a grossoversimplification of the natural melting process and are notequivalent to melting during adiabatic upwelling. It is concludedthat the commonly postulated disappearance of clinopyroxenefrom fertile peridotite compositions at {small tilde}22% meltingis greatly in error if melting in an adiabatically rising mantleis considered, thus providing an explanation for many unsuccessfulattempts by various authors to model the behaviour of transitionelements in sub-oceanic and supra-subduction-zone mantle andderivative magmas.  相似文献   

13.
REE abundances in minerals from spinel peridotite xenoliths from West Germany, the south-western U.S. and Mongolia decrease in the order clinopyroxene > orthopyroxene > olivine > spinel. While clinopyroxenes are similar in absolute chondrite-normalized concentrations to those known from other studies, orthopyroxenes and olivines are significantly lower in LREE although comparable in HREE. Spinels are much lower in all REE than any previously reported values and are completely negligible for the REE budget of peridotites.Partition coefficients for most orthopyroxene/clinopyroxene pairs increase systematically from La to Lu. Olivine/clinopyroxene and spinel/clinopyroxene partition coefficients increase from the intermediate rare earth elements to Lu and normally are higher for La compared to Sm.The application of Nagasawa's (1966) elastic lattice model suggests that all heavy but only minor amounts of the light REE substitute into structural positions of orthopyroxene and olivine.Significant differences between orthopyroxene/clinopyroxene partition coefficients for various xenoliths may be assigned to dependences upon equilibration temperature and bulk chemistry.Apart from grain surface contaminations, fluid inclusions which are practically always present in mantle minerals, can highly concentrate light rare earth elements and thus may be responsible for unexpectedly high concentrations of incompatible elements frequently reported for mantle olivines or orthopyroxenes.  相似文献   

14.
This paper reports detailed studies on harzburgite and serpentinite in the Hegenshan ophiolitic mélange. Harzburgite consists mainly of olivine and orthopyroxene with trace amounts of clinopyroxene and chromian spinel. Clinopyroxene occurs as isolated crystals or in the intergrowth of chromian spinel–clinopyroxene–orthopyroxene. Harzburgite is moderately to highly depleted, displaying high Fo contents in olivine (90.8–92.2), moderate Al2O3 contents in orthopyroxene (1.59–2.79 wt%), low heavy REE abundances in clinopyroxene, and moderate Cr# values of spinel (0.50–0.62). The modal proportions of olivine and orthopyroxene pseudomorph grains imply that the parent of the Hegenshan serpentinite should be harzburgite. Whole-rock compositions of the harzburgite and serpentinite samples are characterized by depletions in Al2O3 and CaO and enrichments in light REE, Sr, and U. Geochemical modeling suggests that the Hegenshan harzburgite represents residues after 17–18% partial melting of the primitive mantle. The melt in equilibrium with clinopyroxene is more depleted than typical forearc basalt and boninite. Various pyroxene thermobarometers yield equilibrated temperatures of 945–1067 °C and pressures of 4.8–8.0 kbar for the Hegenshan harzburgite. The oxygen barometer yields results of +0.4 to +1.7 log units above the fayalite–magnetite–quartz buffer for the Hegenshan harzburgite. These petrological and geochemical characteristics, as well as the estimated P–T–fO2 conditions support a back-arc setting for the Hegenshan ophiolitic mélange.  相似文献   

15.
The grain-scale processes of peridotite melting were examined at 1,340°C and 1.5 GPa using reaction couples formed by juxtaposing pre-synthesized clinopyroxenite against pre-synthesized orthopyroxenite or harzburgite in graphite and platinum-lined molybdenum capsules. Reaction between the clinopyroxene and orthopyroxene-rich aggregates produces a melt-enriched, orthopyroxene-free, olivine + clinopyroxene reactive boundary layer. Major and trace element abundance in clinopyroxene vary systematically across the reactive boundary layer with compositional trends similar to the published clinopyroxene core-to-rim compositional variations in the bulk lherzolite partial melting studies conducted at similar PT conditions. The growth of the reactive boundary layer takes place at the expense of the orthopyroxenite or harzburgite and is consistent with grain-scale processes that involve dissolution, precipitation, reprecipitation, and diffusive exchange between the interstitial melt and surrounding crystals. An important consequence of dissolution–reprecipitation during crystal-melt interaction is the dramatic decrease in diffusive reequilibration time between coexisting minerals and melt. This effect is especially important for high charged, slow diffusing cations during peridotite melting and melt-rock reaction. Apparent clinopyroxene-melt partition coefficients for REE, Sr, Y, Ti, and Zr, measured from reprecipitated clinopyroxene and coexisting melt in the reactive boundary layer, approach their equilibrium values reported in the literature. Disequilibrium melting models based on volume diffusion in solid limited mechanism are likely to significantly underestimate the rates at which major and trace elements in residual minerals reequilibrate with their surrounding melt. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Partition coefficients for olivine-melt and orthopyroxene-melt systems   总被引:3,自引:0,他引:3  
Thermodynamic analysis shows that olivinemelt and orthopyroxene-melt partition coefficients for many elements should be approximately linear functions of DMg. These simple relationships can be combined with the constraint of mineral stoichiometry to allow the direct calculation of partition coefficients for these elements if the major element chemistry of the melt phase is known. A large dataset of published and unpublished experimental mineral-melt pairs for compositions in the range komatiite to andesite has allowed the determination of the empirical constants required for this calculation. The precision of these parameterisations is demonstrated by comparing the values calculated with those observed. Comparison of phenocryst-matrix partition coefficients with those measured from experimental mineral-melt pairs demonstrates that experimentally determined partition coefficients are equivalent to those in magmatic processes. There are therefore no significant kinetic factors precluding magmatic partitioning being reproduced on an experimental timescale. The model provides a set of simple tests for equilibrium and enables the chemical evolution of a magma fractionating olivine or orthopyroxene to be modelled. An empirical equation for distinguishing orthopyroxene from other low-Ca pyroxenes in chemical analyses of experimental runs is also presented.  相似文献   

17.
Clinopyroxenes (cpx) in abyssal and ophiolitic peridotites are commonly analyzed for lithophile trace element abundances in order to estimate degrees of melting and porosity conditions during melt extraction, assuming that these data reflect near-solidus conditions. During cooling, however, cpxs always exsolve into parallel lamellae of low-Ca enstatite and high-Ca diopside. This may potentially lead to redistribution of the initial trace element budget. Since orthopyroxene (opx) cannot significantly host most incompatible trace elements, exsolution will lead to an enrichment in the cpx lamellae. In order to address a possibly exsolution-controlled partitioning between cpx and opx, we have obtained major and trace element mineral compositions on 14 plagioclase-free ocean floor mantle rocks. They cover the entire abyssal peridotite compositional spectrum from very fertile to highly depleted compositions. The mean volume proportion of opx lamellae in cpx porphyroclasts lies around 15% of the original cpx. For the light to middle rare earth elements, the enrichment in the measured cpx exsolution is exclusively controlled by these phase proportions. Relative to these highly incompatible trace elements, solely Ti and Yb partition significantly into opx. Lamellar interpyroxene partition coefficients, estimated from NanoSIMS analyses, are around three times as high as the ones for near-solidus bulk pyroxene. The equilibration temperatures for the exsolution lamella are slightly higher than 800°C. The bulk cpx can be reconstructed using the lamellar proportions and their relative partitioning. The implication of such a reconstruction is that the cpx rare earth element patterns shift almost in parallel to lower values. These shifts, however, do not affect mantle melting models proposed thus far for mid-ocean ridges. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

18.
We have used trace element partitioning data available in the literature to investigate nonideality of the cations of Yb, Sm, Gd, Ca, Mn, Sc, Ni, and Al in silicate melt, olivine, and low-Ca pyroxene. Results are consistent with ordering of Mg and Fe around trace cations in olivine and pyroxene. On the basis of these data, we suggest there is an increasing tendency for Fe to congregate in the vincinity of the trace cation as the size of the trace cation increases. These results are important both in achieving a better understanding of trace element behavior in crystals and in constraining the temperature and compositional dependence of trace element partitioning.  相似文献   

19.
The ultramafic massif of Bulqiza, which belongs to the eastern ophiolitic belt of Albania, is a major source of metallurgical chromitite ore. The massif consists of a thick (> 4 km) sequence, composed from the base upward of tectonized harzburgite with minor dunite, a transitional zone of dunite, and a magmatic sequence of wehrlite, pyroxenite, troctolite and gabbro. Only sparse, refractory chromitites occur within the basal clinopyroxene-bearing harzburgites, whereas the upper and middle parts of the peridotite sequence contain abundant metallurgical chromitites. The transition zone dunites contain a few thin layers of metallurgical chromitite and sparse bodies are also present in the cumulate section. The Bulqiza Ophiolite shows major changes in thickness, like the 41–50 wt.% MgO composition similar with forearc peridotite as a result of its complex evolution in a suprasubduction zone (SSZ) environment. The peridotites show abundant evidence of mantle melt extraction at various scales as the orthopyroxene composition change from core to rim, and mineral compositions suggest formation in a forearc, as Fo values of olivine are in 91.1–93.0 harzburgite and 91.5–91.9 in dunite and 94.6–95.9 in massive chromitite. The composition of the melts passing through the peridotites changed gradually from tholeiite to boninite due to melt–rock reaction, leading to more High Cr# chromitites in the upper part of the body. Most of the massive and disseminated chromitites have high Cr# numbers (70–80), although there are systematic changes in olivine and magnesiochromite compositions from harzburgites, to dunite envelopes to massive chromitites, reflecting melt–rock reaction. Compositional zoning of orthopyroxene porphyroblasts in the harzburgite, incongruent melting of orthopyroxene and the presence of small, interstitial grains of spinel, olivine and pyroxene likewise attest to modification by migrating melts. All of the available evidence suggests that the Bulqiza Ophiolite formed in a suprasubduction zone mantle wedge.  相似文献   

20.
Kelyphite is a reaction product between garnet and olivine, which was formed by subsolidus reactions upon decompression during the ascent of mantle peridotite. We studied crystallographic relationships among constituent (product) phases of kelyphite ?C orthopyroxene, clinopyroxene, spinel and reactant phases, garnet and olivine, using EBSD and found that, for a relatively high temperature sample (from Czech Moldanubian), spinel and pyroxenes are in a topotaxic relationship in such a way that spinel {111} coincides with pyroxene (100) and spinel {110} coincides with pyroxene (010); while the topotaxy is incomplete or non for a lower-temperature sample (from western Norway). On the basis of the observed microstructural and crystallographic relationships, we propose a hypothesis that the topotaxic relationship may be established at nucleation stages of the onset of the kelyphitization and that the degree of topotaxy may be related to the transformation temperature and the degree of supersaturation of the reaction. The lower the temperature, the higher the supersaturation and, therefore, more rapid the nucleation becomes, resulting in a more disordered state in topotaxic relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号