首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The 18 Chinese geochemical standard reference samples GSD 9-12 (stream sediments), GSS 1-8 (soils) and GSR 1-6 (rocks) were prepared after GSD 1-8 (stream sediments) for even wider and increasing needs of geology, exploration geochemistry and geochemical analysis. Usable values of 41 trace, minor and major elements of the 18 samples were published in 1984. In the following two years, efforts were concentrated on the determination of other elements, most of which are more difficult to determine accurately and hence not many data were available in the literature. At the same time, additional data on the 41 elements already evaluated were also submitted. In all, 155 234 results were available along with the 35 284 analytical data submitted. The processing of samples, the examination of sample homogeneity, the plan of collaborative analysis of the samples, and the criteria for defining the recommended values are described. The recommended or reference values of the 72 constituents, to-gether with the 35 284 analytical data of the 18 samples are published in this paper.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
Based on a large number of new boreholes in northern Denmark, and on the existing data, a revised event‐stratigraphy is presented for southwestern Scandinavia. Five significant Late Saalian to Late Weichselian glacial events, each separated by periods of interglacial or interstadial marine or glaciolacustrine conditions, are identified in northern Denmark. The first glacial event is attributed to the Late Saalian c. 160–140 kyr BP, when the Warthe Ice Sheet advanced from easterly and southeasterly directions through the Baltic depression into Germany and Denmark. This Baltic ice extended as far as northern Denmark, where it probably merged with the Norwegian Channel Ice Stream (NCIS) and contributed to a large discharge of icebergs into the Norwegian Sea. Following the break up, marine conditions were established that persisted from the Late Saalian until the end of the Early Weichselian. The next glaciation occurred c. 65–60 kyr BP, when the Sundsøre ice advanced from the north into Denmark and the North Sea, where the Scandinavian and British Ice Sheets merged. During the subsequent deglaciation, large ice‐dammed lakes formed before the ice disintegrated in the Norwegian Channel, and marine conditions were re‐established. The following Ristinge advance from the Baltic, initiated c. 55 kyr BP, also reached northern Denmark, where it probably merged with the NCIS. The deglaciation, c. 50 kyr BP, was followed by a long period of marine arctic conditions. Around 30 kyr BP, the Scandinavian Ice Sheet expanded from the north into the Norwegian Channel, where it dammed the Kattegat ice lake. Shortly after, c. 29 kyr BP, the Kattegat advance began, and once again the Scandinavian and British Ice Sheets merged in the North Sea. The subsequent retreat to the Norwegian Channel led to the formation of Ribjerg ice lake, which persisted from 27 to 23 kyr BP. The expansion of the last ice sheet started c. 23 kyr BP, when the main advance occurred from north–northeasterly directions into Denmark. An ice‐dammed lake was formed during deglaciation, while the NCIS was still active. During a re‐advance and subsequent retreat c. 19 kyr BP, a number of tunnel‐valley systems were formed in association with ice‐marginal positions. The NCIS finally began to break up in the Norwegian Sea 18.8 kyr BP, and the Younger Yoldia Sea inundated northern Denmark around 18 kyr BP. The extensive amount of new and existing data applied to this synthesis has provided a better understanding of the timing and dynamics of the Scandinavian Ice Sheet (SIS) during the last c. 160 kyr. Furthermore, our model contributes to the understanding of the timing of the occasional release of large quantities of meltwater from the southwestern part of the SIS that are likely to enter the North Atlantic and possibly affect the thermohaline circulation.  相似文献   

13.
To obtain the profile of excess 210Pb in sediment column, it is necessary to section the collected core to date. Sectioning thickness is generally not explicit. An approach when sedimentation rate is constant has been suggested by Lu and Matsumoto (Environ Geol 47:804–810, 2005). This paper addresses the case when sedimentation rate is variable. Actually, it is possible to assume that sedimentation rate is constant within the sectioning thickness and based on this concept, a tentative approach for determining reasonable sectioning thickness is proposed.  相似文献   

14.
15.
Sedimentation on the open-coast tidal flats of south-western Korea is controlled by seasonal variation in the intensity of onshore-directed winds and waves. As a result, an environmental oscillation takes place between tide-dominated conditions in summer and wave-dominated conditions in winter. In summer, thick muddy deposits, including sporadic storm deposits, accumulate in response to low wave energy, weak currents, and intense solar insolation that promotes consolidation of the mud at low tide. Bioturbation is minimal because of rapid sedimentation and soft substrate. During the autumn, the summer mud deposits experience erosion due to increasingly strong onshore winds and waves, until only small mud patches and mud pebbles remain. The concentration of ebb runoff between the mud patches produces small, ephemeral tidal creeks. In winter, storm waves occur frequently (ca 10 days a month) and dominate sedimentation in the intertidal zone, producing extensive wave-generated parallel lamination and short-wavelength (0·3–2 m) hummocky cross-stratification. The prevalence of strong onshore winds decreases in spring, allowing longer and more frequent intervals of calm weather, during which time muddy sediments are deposited by tidal processes. Over the long term, winter storm waves dominate sedimentation and the preserved deposits consist of amalgamated storm beds that resemble those generally associated with shorefaces. This raises the question of how many ancient ‘shorefaces’ are, in fact, open-coast tidal flats.  相似文献   

16.
17.
Experiments were carried out in a 10 × 6 m basin to simulate turbidity currents generated by the Horgen Slumping Events of 1875. The conditions for kinematic similarity were satisfied and the experiments gave further insight into the mechanics of transport triggered by the Horgen slumps. The experimental turbidity currents laid down thick deposits on a subaqueous fan, and thin sheets of turbidite on the floor of the elongate basin through longitudinal transport, comparable with the simulated deposits in Lake Zurich. It is concluded that longitudinal transport is a general phenomenon of turbidity currents.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号