首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Asteroids 5 Astraea, 19 Fortuna, 51 Nemausa, 68 Leto, 138 Tolosa, 196 Philomela and 409 Aspasia have been studied using Strömgren photometry observations made in 1997. Simultaneous lightcurves in the uvby Strömgren filters of synodic periods of 0.70004±0.00020, 0.31013±0.00003, 0.32400±0.00020, 0.61910±0.00100, 0.42087±0.00009, 0.34750±0.00020 and 0.37576±0.00060 days, and amplitudes, in the y filter, of 0.m16±0.m05, 0.m30±0.m02, 0.m15±0.m04, 0.m29±0.m02, 0.m43±0.m03, 0.m30±0.m04 and 0.m15±0.m06 have been found for 5 Astraea, 19 Fortuna, 51 Nemausa, 68 Leto, 138 Tolosa, 196 Philomela and 409 Aspasia, respectively. Additional observations of 138 Tolosa and 196 Philomela during February 2000, show lightcurve amplitudes equal or greater than 0.m15 for 138 Tolosa and of 0.m45 for 196 Philomela in 2000 opposition.Solutions for the sense of rotation, sidereal period, pole orientation and shape properties have been proposed for the first time for 138 Tolosa and improved solutions have been obtained for 5 Astraea, 19 Fortuna, 51 Nemausa, 196 Philomela and 409 Aspasia.  相似文献   

2.
We have observed (66652) 1999 RZ253 with the Hubble Space Telescope at seven separate epochs and have fit an orbit to the observed relative positions of this binary. Two orbital solutions have been identified that differ primarily in the inclination of the orbit plane. The best fit corresponds to an orbital period, days, semimajor axis a=4660±170 km and orbital eccentricity e=0.460±0.013 corresponding to a system mass m=3.7±0.4×1018 kg. For a density of the albedo at 477 nm is p477=0.12±0.01, significantly higher than has been commonly assumed for objects in the Kuiper belt. Multicolor, multiepoch photometry shows this pair to have colors typical for the Kuiper belt with a spectral gradient of 0.35 per 100 nm in the range between 475 and 775 nm. Photometric variations at the four epochs we observed were as large as 12±3% but the sampling is insufficient to confirm the existence of a lightcurve.  相似文献   

3.
The Chandra X-ray Observatory (CXO) observations of Comets McNaught-Hartley (MH) and LINEAR S4 (S4) have been processed in the same way to compare X-rays from those comets. The X-ray isophotes are crescent-like in S4 and more circular in MH because of the different phase angles (98° and 44°, respectively). The peak X-ray brightness is greater in S4 than that in MH by a factor of 1.5 and smaller by a factor of 1.7 after the correction for heliocentric distance. The X-ray luminosities of MH and S4 are equal to 8.6 and 1.4×1015 erg s−1 inside the apertures of ρ=1.5 and 0.5×104 km, respectively. (Brightness is 20% of the peak value at these ρ.) Efficiencies of X-ray excitation corrected to the solar wind flow are similar and equal to 4.3×10−14 erg AU3/2 in both comets. This confirms the solar wind excitation of X-rays in comets. Spectra of the comets were extracted with a special care of the background correction and using an energy-dependent spectral resolution code. The MH spectrum consists of ten emissions instead of nine emissions in the previously published spectrum. The new emission at 307 eV fills in a strong minimum in the previous spectrum and removes the major difference between that spectrum and the synthetic spectrum. This emission is assigned to the C+4 and Mg+9 lines. The positions of the other emissions and their identification are similar to those in the previous spectrum. The S4 spectrum consists of eight emissions, and four emissions are the same as in MH. The line identification is given. Ion ratios in the solar wind have been extracted from the spectra. O+8/O+7 is equal to 0.29±0.04 and 0.14±0.02 in MH and S4, and this difference correlates with the higher solar wind speed in S4. Ne+9/O+7 is (15±6)×10−3 and (19±7)×10−3, and these are the first data on Ne+9 in the solar wind. C+6/O+7 is 0.7±0.2 in both MH and S4. X-ray spectroscopy of comets may be used as a diagnostic tool to study the solar wind composition.  相似文献   

4.
The potential energy curves for the electronic ground states of astrophysically important NbO, SiC, CP, PH+, SiF+, and NH+ molecules are constructed by the RKRV method. The dissociation energies are determined by curve-fitting techniques using the five-parameter Hulburt-Hirschfelder function. The estimated dissociation energies are 7.86±0.16, 3.66±0.09, 5.12±0.12, 3.08±0.09, 6.46±0.14, and 3.02±0.09 eV for NbO, SiC, CP, PH+, SiF+, and NH+, respectively. The estimatedD 0 values are in reasonably good agreement with literature values. If we utilizeD 0 values of PH+, SiF+, and NH+, ionization potentials for PH, SiF, and NH are derived. The ionization potentials are 10.12, 7.13, and 13.66 eV, respectively, for PH, SiF, and NH. Dissociation energies for the above molecules are also estimated by use of the Birge-Sponer extrapolation and Hildenbrand and Murad methods.  相似文献   

5.
An experimental investigation of the isotopic composition of cosmic-ray nitrogen and oxygen is reported. The detector is a stack of nuclear emulsions exposed at about 3 g cm–2 atmospheric depth. The mass determinations are based on photometric track width measurements on stopping nuclei. The standard deviation of the mass measurements is 0.46 AMU for nitrogen and 0.50 AMU for oxygen. The energy of the measured nuclei falls in the interval 220–450 MeV nucleon–1 at the top of the atmosphere.The measured isotopic quotients have been extrapolated to near interstellar space with standard methods. The extrapolated quotients are15N/N=0.34±0.10,17O/O=0.02±0.03,18O/O=0.07±0.03. The nitrogen quotient extrapolated to the cosmic-ray source shows that the nitrogenoxygen abundance ratio is approximately the same in the source as in the solar system. The result has been compared with different hypotheses about the source composition and is found to be in best agreement with a hypothesis which states that source matter has approximately the composition of the solar system and that a selection mechanism, which depends on the atomic properties of the elements, is working in the source.  相似文献   

6.
We have studied Extensive Air Showers (EAS) with two small arraysof 1 m2 scintillation detectors inTehran, 1200 m above sea level.The distribution of air showersin zenith and azimuth angles has been studied and a cosnΘdistribution with n = 7.2±0.2 was obtained for zenith angledistribution. An asymmetry has been observed in the azimuthaldistribution of EAS of cosmic rays because of magnetic field ofthe Earth. Amplitudes of the first and the second harmonics ofobserved distribution depend on zenith angle as A I ≈ (0.02 + 0.35 sin2Θ)±0.02, and A II ≈ (0.03 + 0.42 sin4Θ)±0.03. Meanwhile, the uncertainties arising from the instrument, transit location of shower particles in the scintillator and fluctuations in the shower front have been calculated.  相似文献   

7.
This paper presents the results of measurements of the Crab nebula in the decametre range with an interferometer whose baseline is 2.4–3.5×103 of the wavelength. Visibility function values, which in these observations determine the contribution by the compact source to the total nebula flux, have been measured at frequencies 16.7, 20 and 25 MHz to be 0.64±0.07, 0.43±0.04 and 0.31±0.03, respectively. The spectral index of the spectrum obtained for the compact source in the range 16.7–122 MHz is 2.09±0.04. Flattening of the nebula spectrum without the compact source has been confirmed for the decametre range.  相似文献   

8.
Over the past 10 years the isotopic ratios of carbon (12C/13C) and nitrogen (14N/15N) have been determined for a dozen comets, bright enough to allow obtaining the required measurements from the ground. The ratios were derived from high-resolution spectra of the CN coma measured in the B2+−X2+ (0, 0) emission band around 387 nm. The observed comets belong to different dynamical classes, including dynamically new as well as long- and short-period comets from the Halley- and Jupiter-family. In some cases the comets could be observed at various heliocentric distances. All values determined for the carbon and nitrogen isotopic ratios were consistent within the error margin irrespective of the type of comet or the heliocentric distance at which it was observed. Our investigations resulted in average ratios of 12C/13C=91±21 and nitrogen 14N/15N=141±29. Whilst the value for the carbon isotopic ratio is in good agreement with the solar and terrestrial value of 89, the nitrogen isotopic ratio is very different from the telluric value of 272.  相似文献   

9.
P.M. Fry  L.A. Sromovsky 《Icarus》2007,192(1):117-134
On August 11, 2004, we made adaptive optics observations of the Uranus and Neptune systems with the Keck II Near Infrared Camera. Uranus and Triton were observed in three broadband filters (J, H, and K-prime) and four narrowband filters [Hcont, FeII, He1_B, and H2(v=1-0)]. Miranda, Ariel, Umbriel, and Oberon were observed in the four narrowband filters only. To achieve the highest possible photometric accuracy, and thus the tightest possible constraints on atmospheric aerosol models and gas mixing ratios, we used aperture photometry that accounted for the dependence of point-spread functions and growth curves on the adaptive optics reference object, and accounted for recently determined phase curves of each object. The satellite albedos we determined were compared with published relative spectra to verify the relative consistency of our observations, which were subsequently used to convert published relative spectra to absolute spectra. We used these absolute spectra and synthetic photometry methods to compare published values in dissimilar photometric systems to each other and to our observations. We find our satellite albedos in best agreement with photometry from Karkoschka [Karkoschka, E., 2001. Icarus 151, 51-68], which is the best characterized and most contemporaneous data set. Our estimated absolute accuracy of 5% to 8% is consistent with these intercomparisons. We obtained the following ring-subtracted and discrete feature-free albedos of Uranus: J: (1.66±0.07)×10−2, H: (1.09±0.05)×10−2, K: (2.08±0.15)×10−4, Hcont: (3.71±0.23)×10−2, FeII: (1.14±0.07)×10−3, He1_B: (2.06±0.16)×10−4, and H2: (1.27±0.10)×10−4.  相似文献   

10.
A new sample of local, active extragalactic objects has been compiled: a combined sample that is the sum of two samples, of Sy1 galaxies and of quasars from Markarian's survey and quasars from the Bright Quasar Survey. A log N(<B)-B relation is constructed for the new sample of active galaxies, limited to the apparent stellar magnitude B = 15 m .5. It can be represented by a straight line with a slope = 0.60 ± 0.06. It is a good extension, without a noticeable jog, of the analogous relationship for the Hamburg—ESO survey, which has a slope = 0.59 ± 0.04. The combined surface density of bright active galaxies and quasars down to B = 15 m .5 is 0.01 per square degree.  相似文献   

11.
New maps of martian water vapor and hydrogen peroxide have been obtained in November-December 2005, using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infra Red Telescope facility (IRTF) at Mauna Kea Observatory. The solar longitude Ls was 332° (end of southern summer). Data have been obtained at 1235-1243 cm−1, with a spectral resolution of 0.016 cm−1 (R=8×104). The mean water vapor mixing ratio in the region [0°-55° S; 345°-45° W], at the evening limb, is 150±50 ppm (corresponding to a column density of 8.3±2.8 pr-μm). The mean water vapor abundance derived from our measurements is in global overall agreement with the TES and Mars Express results, as well as the GCM models, however its spatial distribution looks different from the GCM predictions, with evidence for an enhancement at low latitudes toward the evening side. The inferred mean H2O2 abundance is 15±10 ppb, which is significantly lower than the June 2003 result [Encrenaz, T., Bézard, B., Greathouse, T.K., Richter, M.J., Lacy, J.H., Atreya, S.K., Wong, A.S., Lebonnois, S., Lefèvre, F., Forget, F., 2004. Icarus 170, 424-429] and lower than expected from the photochemical models, taking in account the change in season. Its spatial distribution shows some similarities with the map predicted by the GCM but the discrepancy in the H2O2 abundance remains to be understood and modeled.  相似文献   

12.
Wavelengths of clean atmospheric water lines, and some solar lines, in the wavelength interval 10750 Å to 10900 Å have been measured to an accuracy approaching ± 1 mÅ. Strengths and wavelengths have been measured for all atmospheric water lines with absorption coefficients > 5 × 10–4 cm–1 gm–1 cm–2 at 280K, that lie within 15 Å of the He I 10830 Å featur of the stronger He component is affected by a weak water line which reduces atmospheric transmission by nearly 1 % with 10 mm precipitable water in the line of sight.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

13.
We have carried out an analysis of the (0, 0) vibrational band of the CN molecule in Comet Mrkos 1957d, including the effect of collisions. We found that the sum of the squares of the residuals can be reduced by a factor of ten, if collisions account for 46±3% of the population of the lower level. A rotational temperature can be assigned to the cometary gas. The best value found was 410±40 K. The best fit for the constantR 1 was (1.07±0.10)×10–4. The velocity of the comet was left as a free parameter. We found for it a value of 34.38±0.10 km s–1. This result is in disagreement with the nuclear orbital velocity of 34.74 km s–1. The discrepancy can be explained, if the CN molecules are ejected from the cometary nucleus preferentially in the sunward direction, with a mean velocity that corresponds to the above temperature.  相似文献   

14.
The Pioneer Venus Orbiter Infrared Radiometer and Venera 15 Fourier Transform Spectrometer observations of thermal emission from Venus' middle atmosphere between 10° S and 50° N have been independently re-analyzed using a common method to determine global maps of temperature, cloud optical depth, and water vapor abundance. The spectral regions observed include the strong 15 μm carbon dioxide band and the 45 μm fundamental rotational water band. The different spatial and spectral resolutions of the two instruments have necessitated the development of flexible analysis tools. New radiative transfer and retrieval models have been developed for this purpose based on correlated-k absorption tables calculated with up-to-date spectral line data. The common analysis of these two sets of observations has hence been possible for the first time. From the PV OIR observations, the cloud-top unit optical depth pressure showed a minimum of ∼110±10 mbars in the evening equatorial region and a maximum of ∼160±12 mbars in the morning mid-latitude regions. From the Venera 15 FTS spectra, the cloud-top pressure was found to increase from morning values of ∼120±10 to 200±30 mbars in the late afternoon/early evening region. The cloud-top water vapor abundances observed by the PV OIR instrument were found to fluctuate from 10±5 ppm at night up to 90±15 ppm in the equatorial cloud-top region shortly after the sub-solar point. The mean Venera 15 FTS water vapor abundances were found to be 12±5 ppm with only a slight enhancement over the equatorial latitude bands and no clear day-night distinction. The common analysis of these two sets of observations broadly validates previously published individual findings. The differences in the retrieved atmospheric state can no longer be attributed to radiative transfer modeling bias and suggest significant temporal variability in the middle atmosphere of Venus.  相似文献   

15.
While CO, HCl, and HF, that were considered in the first part of this work, have distinct absorption lines in high-resolution spectra and were detected four decades ago, the lines of HDO, OCS, and SO2 are either very weak or blended by the telluric lines and have not been observed previously by ground-based infrared spectroscopy at the Venus cloud tops. The H2O abundance above the Venus clouds is typically below the detection limit of ground-based IR spectroscopy. However, the large D/H ratio on Venus facilitates observations of HDO. Converted to H2O with D/H ≈ 200, our observations at 2722 cm−1 in the Venus afternoon show a H2O mixing ratio of ∼1.2 ppm at latitudes between ±40° increasing to ±60° by a factor of 2. The observations in the early morning reveal the H2O mixing ratio that is almost constant at 2.9 ppm within latitudes of ±75°. The measured H2O mixing ratios refer to 74 km. The observed increase in H2O is explained by the lack of photochemical production of sulfuric acid in the night time. The recent observations at the P-branch of OCS at 4094 cm−1 confirm our detection of OCS. Four distributions of OCS along the disk of Venus at various latitudes and local times have been retrieved. Both regular and irregular components are present in the variations of OCS. The observed OCS mixing ratio at 65 km varies from ∼0.3 to 9 ppb with the mean value of ∼3 ppb. The OCS scale height is retrieved from the observed limb darkening and varies from 1 to 4 km with a mean value of half the atmospheric scale height. SO2 at the cloud tops has been detected for the first time by means of ground-based infrared spectroscopy. The SO2 lines look irregular in the observed spectra at 2476 cm−1. The SO2 abundances are retrieved by fitting by synthetic spectra, and two methods have been applied to determine uncertainties and detection limits in this fitting. The retrieved mean SO2 mixing ratio of 350 ± 50 ppb at 72 km favors a significant increase in SO2 above the clouds since the period of 1980-1995 that was observed by the SOIR occultations at Venus Express. Scale heights of OCS and SO2 may be similar, and the SO2/OCS ratio is ∼500 and may be rather stable at 65-70 km under varying conditions on Venus.  相似文献   

16.
Ethane (C2H6), methylacetylene (CH3C2H or C3H4) and diacetylene (C4H2) have been discovered in Spitzer 10-20 μm spectra of Uranus, with 0.1-mbar volume mixing ratios of (1.0±0.1)×10−8, (2.5±0.3)×10−10, and (1.6±0.2)×10−10, respectively. These hydrocarbons complement previously detected methane (CH4) and acetylene (C2H2). Carbon dioxide (CO2) was also detected at the 7-σ level with a 0.1-mbar volume mixing ratio of (4±0.5)×10−11. Although the reactions producing hydrocarbons in the atmospheres of giant planets start from radicals, the methyl radical (CH3) was not found in the spectra, implying much lower abundances than in the atmospheres of Saturn or Neptune where it has been detected. This finding underlines the fact that Uranus' atmosphere occupies a special position among the giant planets, and our results shed light on the chemical reactions happening in the absence of a substantial internal energy source.  相似文献   

17.
We present revised tremolite powder thermal decomposition kinetics using previous and newly acquired data from longer time (years instead of months) and lower temperature experiments (<1073 K). We also present kinetic results for decomposition of millimeter- to centimeter-sized tremolite grains. Natural tremolite samples were heated at ambient pressure in flowing CO2 or N2 gas from 1023-1238 K. The tremolite decomposition products are a physical mixture of two pyroxene solid solutions (with the bulk composition Dp59En41), a silica polymorph, and water vapor. Decomposition rates were calculated by using the mass loss of the heated samples. Tremolite crystals and crystalline powder decompositions follow different but related Avrami-Erofe'ev (nucleation and growth) kinetic models. The rate equations for thermal decomposition of tremolite crystalline powder and the larger crystal grains are log10kpowder (h−1)=18.69(±0.19)−23,845(±833)/T and log10kcrystal (h−1)=19.82(±0.07)−25,670(±916)/T. The associated apparent activation energies are 456(±16) kJ mol−1 and 491(±18) kJ mol−1, respectively. We propose a decomposition mechanism and suggest that decomposition and dehydroxylation occur simultaneously. The rate-limiting step is proposed to be structural rearrangement of the amphibole structure to the two pyroxenes and silica. This step and the overall decomposition rate are predicted to be independent of pressure from 1 to 100 bars. These kinetic analyses strengthen our previous conclusion (Johnson and Fegley, 2000, Icarus 146, 301-306) that if hydrous minerals, such as tremolite, formed on Venus during a wetter past, then these minerals could still exist at current conditions on Venus' surface today.  相似文献   

18.
The first confirmed lunar impact flash due to a non-Leonid meteoroid is reported. The observed Perseid meteoroid impact occurred at 18h28m27s on August 11, 2004 (UT). The selenographic coordinates of the lunar impact flash are 48±1° N and 72±2° E, and the flash had a visual magnitude of ca. 9.5 with duration of about 1/30 s. The mass of the impactor is estimated to have been 12 g based on a nominal model with conversion efficiency from kinetic to optical energy of 2×10−3. Extrapolation of a power law size-frequency distribution fitting the sub-centimeter Perseid meteoric particles to large meteoroids suggests that several flashes should have been observed at this optical efficiency. The detection of only one flash may indicate that the optical efficiency for Perseid lunar impact is much lower, or that the slope of the size distribution differs between large meteoroids and typical sub-centimeter meteoric particles.  相似文献   

19.
High-resolution infrared imaging spectroscopy of Mars has been achieved at the NASA Infrared Telescope Facility (IRTF) on June 19-21, 2003, using the Texas Echelon Cross Echelle Spectrograph (TEXES). The areocentric longitude was 206°. Following the detection and mapping of hydrogen peroxide H2O2 [Encrenaz et al., 2004. Icarus 170, 424-429], we have derived, using the same data set, a map of the water vapor abundance. The results appear in good overall agreement with the TES results and with the predictions of the Global Circulation Model (GCM) developed at the Laboratory of Dynamical Meteorology (LMD), with a maximum abundance of water vapor of 3±1.5×10−4(17±9 pr-μm). We have searched for CH4 over the martian disk, but were unable to detect it. Our upper limits are consistent with earlier reports on the methane abundance on Mars. Finally, we have obtained new measurements of CO2 isotopic ratios in Mars. As compared to the terrestrial values, these values are: (18O/17O)[M/E] = 1.03 ± 0.09; (13C/12C)[M/E] = 1.00 ± 0.11. In conclusion, in contrast with the analysis of Krasnopolsky et al. [1996. Icarus 124, 553-568], we conclude that the derived martian isotopic ratios do not show evidence for a departure from their terrestrial values.  相似文献   

20.
Tommy Grav  James Bauer 《Icarus》2007,191(1):267-285
We have performed broadband color photometry of the twelve brightest irregular satellites of Saturn with the goal of understanding their surface composition, as well as their physical relationship. We find that the satellites have a wide variety of different surface colors, from the negative spectral slopes of the two retrograde satellites S IX Phoebe (S=−2.5±0.4) and S XXV Mundilfari (S=−5.0±1.9) to the fairly red slope of S XXII Ijiraq (S=19.5±0.9). We further find that there exist a correlation between dynamical families and spectral slope, with the prograde clusters, the Gallic and Inuit, showing tight clustering in colors among most of their members. The retrograde objects are dynamically and physically more dispersed, but some internal structure is apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号