首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Seven landslide dams of old seismic origin in southeastern Sicily (Italy)   总被引:3,自引:0,他引:3  
This paper focuses on origin, morphology and evolution of seven landslide dams in southeastern Sicily. These landforms are part of a set of 146 landslides recently recognised in this area, which was hitherto considered to have little or no slope instability. Southeastern Sicily consists of a plateau (the Hyblaean Mountains) incised by canyons and surrounded by lower lands. It is underlain mostly by subhorizontal, moderately to well-lithified carbonate rocks. Relief is low.Several lines of evidence justify the assumption of a seismic trigger for the landslides in this area: (1) the geo-climatic environment is not favourable to landsliding, (2) low-angle basal shear surfaces are very frequent, (3) landslide distribution is consistent with the known magnitude–distance relationships for earthquake-induced landslides, (4) historical documents testify to earthquake-triggered slope instability and (5) a specific landslide can be exactly dated.The phenomena illustrated here include six rock slides (one with a debris-flow component) and one rock fall. Slip surfaces are mostly non-circular. Landslide volume ranges from about 50×103 to 34×106 m3.With reference to the Costa and Schuster [Geol. Soc. Am. Bull. 100 (1988) 1054] classification of landslide dams, five cases belong to type II (spanning the entire valley), and two to type IV (failures from both valley sides, with frontal or side contact between failed masses). With reference to Crozier and Pillans [Catena 18 (1991) 471] classification of landslide lakes, all cases show a main valley lake while tributary valley, back and supra lakes are sporadically present. One damming is attributable to the 1693 earthquake with certainty; another damming, to the same earthquake with high probability. Three dams were reincised, one breached or reincised, one is slightly reincised and two more or less intact; correspondingly, five silting up deposits were reincised, one is being reincised at present and two are still under formation.  相似文献   

2.
Sedimentary impacts from landslides in the Tachia River Basin, Taiwan   总被引:1,自引:0,他引:1  
Chien-Yuan Chen   《Geomorphology》2009,105(3-4):355-365
A case study of coseismic landslides and post-seismic sedimentary impacts of landslides due to rainfall events was conducted in the Tachia River basin, Taichung County, central Taiwan. About 3000 coseismic landslides occurred in the basin during the ML 7.3 Chi-Chi earthquake in 1999. The deposits from these landslides provided material for numerous debris flows induced by subsequent rainfall events. The estimated 4.1 × 107 m3 of landslide debris produced in the upland area caused sediment deposition in riverbeds, and flash floods inundated downstream areas with sediment during torrential rains. The landslide frequency-size distributions for the coseismic landslides and the subsequent rainfall-induced landslides were analyzed to determine the sediment budgets of the post-seismic geomorphic response in the landslide-dominated basin. Both the coseismic and the rainfall-induced landslides show a power–law frequency-size distribution with a rollover. It was found that the rainfall-induced landslide magnitude was smaller than the coseismic one, and that both have comparable negative scaling exponents in cumulative form, of about − 2.0 for larger landslides (> 10− 2 km2). This may be attributed to ongoing movement or reactivation of old landslides, and a natural stabilisation of small landslides between 10− 4 and 10− 2 km2. It is proposed that the characteristics of geological formations and rainfall as well as changes in landslide area are reflected in the power–law distribution.  相似文献   

3.
The Jiufengershan rock and soil avalanche is one of the largest landslides triggered by the Chi-Chi earthquake Taiwan 1999. The landslide destabilized the western limb of the Taanshan syncline along a weak stratigraphic layer. It involved a flatiron remnant, which was almost entirely mobilized during the earthquake. The avalanche was slowed down by NS trending ridges located downstream along the Jiutsaihu creek. The landslide affected a 60 m thick and 1.5 km long sedimentary pile composed of shales and sandstones, which dip 22°SE toward a transverse valley. The triggering mechanism and the sliding process were analyzed by means of geological and morphological data from aerial photographs and observed in the field. A high-resolution airborne Light Detection and Ranging (LiDAR) image taken 2.5 years after the landslide allows the identification of morphological structures along the sliding surface and the landslide accumulation. The sliding surface shows several deformation structures such as fault scarps and folds. These structures are interpreted in terms of basal shear stresses created during the avalanche. Three major joint sets were identified at the sliding surface. The isopach map of the landslide was calculated from the comparison between elevation models before and after the earthquake. The coseismic volume of mobilized material and landslide deposit data are 42 × 106 m3 and 50 × 106 m3, respectively. The geometry of the landslide accumulation in the field has an irregular star shape. The morphology of the deposit area shows a sequence of smooth reliefs and depressions that contrast with the neighboring ridges.  相似文献   

4.
This study assesses the influence of development on landslide occurrences in a rapidly developing area, Kota Kinabalu in Sabah Malaysia, across three assessment years (1978, 1994 and 2010). Two development indicators, land use and road density, were used to measure the influence of development on landslide occurrence. Land use was classified into four categories (barren, forest, developed and other), and road density was classified into low (< 50 m/40 000 m2), moderate (50–150 m/40 000 m2) and high (> 150 m/40 000 m2). Landslide density analysis was used to calculate the concentration of landslide for the different land use and road density categories. The number of landslides in developed areas increased from 19 landslides/100 km2 in 1978, to 29 landslides/100 km2 in 1994 and to 50 landslides/100 km2 in 2010, mirroring an increase in land use for development purposes from 8 per cent in 1978 to 27 per cent in 2010. Landslide density also gradually increased in the high road density class from 10 landslides/100 km2 in 1978, to 30 landslides/100 km2 in 1994 and 62 landslides/100 km2 in 2010. These results show that road construction activities influence landslide occurrences.  相似文献   

5.
Landslides can cause the formation of dams, but these dams often fail soon after lake formation. Thus, rapidly evaluating the stability of a landslide dam is crucial for effective hazard mitigation. This study utilizes discriminant analysis based on a Japanese dataset consisting of 43 well documented landslide dams to determine the significant variables, including log-transformed peak flow (or catchment area), and log-transformed dam height, width and length in hierarchical order, which affect the stability of a landslide dam. The high overall prediction power (88.4% of the 43 training cases are correctly classified) and the high cross-validation accuracy (86%) demonstrate the robustness of the proposed discriminant models PHWL (with variables including log-transformed peak flow, and log-transformed dam height, width and length) and AHWL (with variables including log-transformed catchment area, and log-transformed dam height, width and length). Compared to a previously proposed “DBI” index-based graphic approach, the discriminant model AHV – which uses the log-transformed catchment area, dam height, and dam volume as relevant variables – shows better ability to evaluate the stability of landslide dams. Although these discriminant models are established using a Japanese dataset only, the present multivariate statistical approach can be applied for an expanded dataset without any difficulty when more completely documented worldwide landslide-dam data are available.  相似文献   

6.
During previous work in the San Juan Mountains of Colorado, we observed that headwater (first-order) streams draining landslides were often characterized by the presence of beaver (Castor canadensis) dams whereas other headwater tributaries typically lacked evidence of beaver. Here, we hypothesize that hummocky landslide topography attracts beaver. To test the hypothesis, we examined 10 landslides and 11 adjacent headwater streams in the area, noting location, vegetation, elevation, and evidence of beaver activity, and then compared the landslide and non-landslide headwater streams using the G-test to determine whether or not variables were independent of one another. We reject the null hypothesis that beaver dam presence is unrelated to landslide deposits (p = 0.003). We further hypothesize that this relationship results from differences in stream gradient and concavity between landslide streams and other streams. We found streams on landslides to have a greater portion of their gradients below what geologic and ecologic literature suggests is a reasonable upper threshold (12%) for beaver dam maintenance. Additionally, streams on landslides are more concave. We conclude that the relationship between beaver presence and landslides results from a higher proportion of reaches below the 12% threshold and increased concavity of headwater streams on landslides.  相似文献   

7.
Terrain attributes such as slope gradient and slope shape, computed from a gridded digital elevation model (DEM), are important input data for landslide susceptibility mapping. Errors in DEM can cause uncertainty in terrain attributes and thus influence landslide susceptibility mapping. Monte Carlo simulations have been used in this article to compare uncertainties due to DEM error in two representative landslide susceptibility mapping approaches: a recently developed expert knowledge and fuzzy logic-based approach to landslide susceptibility mapping (efLandslides), and a logistic regression approach that is representative of multivariate statistical approaches to landslide susceptibility mapping. The study area is located in the middle and upper reaches of the Yangtze River, China, and includes two adjacent areas with similar environmental conditions – one for efLandslides model development (approximately 250 km2) and the other for model extrapolation (approximately 4600 km2). Sequential Gaussian simulation was used to simulate DEM error fields at 25-m resolution with different magnitudes and spatial autocorrelation levels. Nine sets of simulations were generated. Each set included 100 realizations derived from a DEM error field specified by possible combinations of three standard deviation values (1, 7.5, and 15 m) for error magnitude and three range values (0, 60, and 120 m) for spatial autocorrelation. The overall uncertainties of both efLandslides and the logistic regression approach attributable to each model-simulated DEM error were evaluated based on a map of standard deviations of landslide susceptibility realizations. The uncertainty assessment showed that the overall uncertainty in efLandslides was less sensitive to DEM error than that in the logistic regression approach and that the overall uncertainties in both efLandslides and the logistic regression approach for the model-extrapolation area were generally lower than in the model-development area used in this study. Boxplots were produced by associating an independent validation set of 205 observed landslides in the model-extrapolation area with the resulting landslide susceptibility realizations. These boxplots showed that for all simulations, efLandslides produced more reasonable results than logistic regression.  相似文献   

8.
The Southern Alps of New Zealand are the topographic expression of active oblique continental convergence of the Australian and Pacific plates. Despite inferred high rates of tectonic and climatic forcing, the pattern of differential uplift and erosion remains uncertain. We use a 25-m DEM to conduct a regional-scale relief analysis of a 250-km long strip of the western Southern Alps (WSA). We present a preliminary map of regional erosion and denudation by overlaying mean basin relief, a modelled stream-power erosion index, river incision rates, historic landslide denudation rates, and landslide density. The interplay between strong tectonic and climatic forcing has led to relief production that locally attains 2 km in major catchments, with mean values of 0.65–0.68 km. Interpolation between elevations of major catchment divides indicates potential removal of l01–103 km3, or a mean basin relief of 0.51–0.85 km in the larger catchments. Local relief and inferred river incision rates into bedrock are highest about 50–67% of the distance between the Alpine fault and the main divide. The mean regional relief variability is ± 0.5 km.Local relief, valley cross-sectional area, and catchment width correlate moderately with catchment area, and also reach maximum values between the range front and the divide. Hypsometric integrals show scale dependence, and together with hypsometric curves, are insufficient to clearly differentiate between glacial and fluvial dominated basins. Mean slope angle in the WSA (ψ = 30°) is lower where major longitudinal valleys and extensive ice cover occur, and may be an insensitive measure of regional relief. Modal slope angle is strikingly uniform throughout the WSA (φ = 38–40°), and may record adjustment to runoff and landsliding. Both ψ and φ show non-linear relationships with elevation, which we attribute to dominant geomorphic process domains, such as fluvial processes in low-altitude valley trains, surface runoff and frequent landsliding on montane hillslopes, “relief dampening” by glaciers, and rock fall/avalanching on steep main-divide slopes.  相似文献   

9.
The Radicofani Basin, stretching about 30 km NW–SE, is an intra-Central Apennine basin connected to Pliocene–Pleistocene extensional tectonics. It consists of an Early to Middle Pliocene succession including essentially shelf pelites. In the Radicofani area, province of Siena (Tuscany region), morphodynamic processes are very frequent with widespread badlands and rapidly evolving mudflows. In order to evaluate the general instability of the Radicofani area, geological and geomorphological surveys were carried out. The 1954, 1990 and 2003 aerial surveys allowed a comparison of the changes in the various morphological aspects of the study area, which suggested an increase in slope instability with time. A new complex translational landslide evolving into mudflows, activated during the winter of 2003, was monitored using an experimental system based on terrestrial LIDAR (Light Detection and Ranging) and GPS (Global Positioning System) technologies. This system allowed the monitoring of the morphologic and volumetric evolution of the landslide. A comparison of the monitoring data of October 2004, June 2005, May 2006 and May 2007 points out that the evolution is characterised by the sliding of displaced materials. A volume of about 1300 m3 of materials was removed during the period 2004–2005, 300 m3 for 2005–2006, and 400 m3 for 2006–2007. The greater initial mass movement probably reflects a greater static imbalance during the early period of landslide movement and increased rainfall. Therefore, the proposed monitoring system methodology allows the numerical evaluation of the landslide morphological evolution and to validate the landslide evolution model based on geological and geomorphological field surveys.  相似文献   

10.
The catchment of the River Partnach, a torrent situated in a glacial valley in the Northern Calcareous Alps of Bavaria/Germany, was affected by a high‐magnitude flood on 22/23 August 2005 with a peak discharge of more than 16 m3s‐1 at the spring and about 50 m3s‐1 at the catchment outlet. This flood was caused by a long period of intense rainfall with a maximum intensity of 230 mm per day. During this event, a landslide dam, which previously held a small lake, failed. The flood wave originating from the dam breach transported a large volume of sediment (more than 50 000 m3) derived from bank erosion and the massive undercutting of a talus cone. This caused a fundamental transformation of the downstream channel system including the redistribution of large woody debris and channel switching. Using terrestrial survey and aerial photography, erosional and depositional consequences of the event were mapped, pre‐ and post‐event surfaces were compared and the sediment budget of the event calculated for ten consecutive channel reaches downstream of the former lake. According to the calculations more than 100 000 tonnes of sediment were eroded, 75% of which was redeposited within the channel and the proximal floodplain. A previous large flood which occurred a few weeks prior to the August 2005 event had a significant effect on controlling the impact of this event.  相似文献   

11.
The well preserved and undissected Columbia Mountain landslide, which is undergoing suburban development, was studied to estimate the timing and processes of emplacement. The landslide moved westward from a bedrock interfluve of the northern Swan Range in Montana, USA onto the deglaciated floor of the Flathead Valley. The landslide covers an area of about 2 km2, has a toe-to-crown height of 1100 m, a total length of 3430 m, a thickness of between 3 and 75 m, and an approximate volume of 40 million m3. Deposits and landforms define three portions of the landslide; from the toe to the head they are: (i) clast-rich diamictons made up of gravel-sized angular rock fragments with arcuate transverse ridges at the surface; (ii) silty and sandy deposits resting on diamictons in an internally drained depression behind the ridges; and (iii) diamictons containing angular and subangular pebble-to block-sized clasts (some of which are glacially striated) in an area of lumpy topography between the depression and the head of the landslide. Drilling data suggest the diamictons cover block-to-slab-sized bedrock clasts that resulted from an initial stage of the failure.The landslide moved along a surface that developed at a high angle to the NE-dipping, thinly bedded metasediments of the Proterozoic Belt Supergroup. The exposed slope of the main scarp dips 30–37°W. A hypothetical initial rotational failure of the lower part of a bedrock interfluve may have transported bedrock clasts into the valley. The morphology and deposits at the surface of the landslide indicate deposition by a rock avalanche (sturzstrom) derived from a second stage of failure along the upper part of the scarp.The toe of the Columbia Mountain landslide is convex-west in planview, except where it was deflected around areas now occupied by glacial kettles on the north and south margins. Landsliding, therefore, occurred during deglaciation of the valley while ice still filled the present-day kettles. Available chronostratigraphy suggests that the ˜1-km thick glacier in the region melted before 12,000 14C years BP—within 3000 years of the last glacial maximum. Deglaciation and hillslope failure are likely causally linked. Failure of the faceted interfluve was likely due tensile fracturing of bedrock along a bedding-normal joint set shortly after glacial retreat from the hillslope.Open surficial tension fractures and grabens in the Swan Range are limited to an area above the crown of the landslide. Movement across these features suggests that extensional flow of bedrock (sackung) is occurring in what remains of the ridge that failed in the Columbia Mountain landslide. The fractures and grabens likely were initiated during failure, but their morphologies suggest active extension across some grabens. Continued movement of bedrock above the crown may result in future mass movements from above the previous landslide scarp. Landslides sourced from bedrock above the scarp of the late-glacial Columbia Mountain landslide, which could potentially be triggered by earthquakes, are geologic hazards in the region.  相似文献   

12.
Lake Shewa in northeastern Badakhshan, Afghanistan, was dammed sometime in antiquity when a large rock avalanche (sturzstrom) from the fault‐shattered and strongly weathered Archean gneisses of the Zirnokh peaks to the north moved into the Arakht River valley. This rock avalanche dammed up the river and its tributaries to a dam thickness of c. 400 m, producing a 12‐km‐long lake that is as much as 270 m deep, leaving c. 80 m of freeboard to the top of the dam. At least four separate instances of slope failure have been mapped at the site of the landslide dam, as well as a rock glacier, using remotely sensed data, historical maps, and Google Earth?. Spring seepage through the dam face has caused several recent subsidiary debris slides, which if continued at a large enough scale for long enough, or with additional seismicity from the active strike‐slip faults that cross beneath the landslide dam, could threaten its integrity. Otherwise the clean water that emerges from the dam face could be the source of an unvarying mini‐hydroelectric power source, in addition to the agricultural irrigation that it provides at the present time.  相似文献   

13.
The weights-of-evidence model (a Bayesian probability model) was applied to the task of evaluating landslide susceptibility using GIS. Using landslide location and a spatial database containing information such as topography, soil, forest, geology, land cover and lineament, the weights-of-evidence model was applied to calculate each relevant factor's rating for the Boun area in Korea, which had suffered substantial landslide damage following heavy rain in 1998. In the topographic database, the factors were slope, aspect and curvature; in the soil database, they were soil texture, soil material, soil drainage, soil effective thickness and topographic type; in the forest map, they were forest type, timber diameter, timber age and forest density; lithology was derived from the geological database; land-use information came from Landsat TM satellite imagery; and lineament data from IRS satellite imagery. Tests of conditional independence were performed for the selection of factors, allowing 43 combinations of factors to be analysed. For the analysis of mapping landslide susceptibility, the contrast values, W + and W -, of each factor's rating were overlaid spatially. The results of the analysis were validated using the previous landslide locations. The combination of slope, curvature, topography, timber diameter, geology and lineament showed the best results. The results can be used for hazard prevention and land-use planning.  相似文献   

14.
The purpose of the present study is the analysis of landslide risk for roads and buildings in a small test site (20 km2) in the area north of Lisbon (Portugal). For this purpose, an evaluation is performed integrating into a GIS information obtained from multiple sources: (i) landslide hazard; (ii) elements at risk; and (iii) vulnerability. Landslide hazard is assessed on a probabilistic basis for three different types of slope movement (shallow translational slides, translational slides and rotational slides), based on some assumptions such as: (i) the likelihood of future landslide occurrence can be measured through statistical relationships between past landslide distribution and specified spatial data sets considered as landslide predisposing factors; and (ii) the rainfall combination (amount–duration) responsible for past slope instability within the test site will produce the same effects (i.e. same type of landslides and similar total affected area), each time they occur in the future. When the return period of rainfall triggering events is known, different scenarios can be modelled, each one ascribed to a specific return period. Therefore, landslide hazard is quantitatively assessed on a raster basis, and is expressed as the probability for each pixel (25 m2) to be affected by a future landslide, considering a rainfall triggering scenario with a specific return period. Elements at risk within the test site include 2561 buildings and roads amounting to 169 km. Values attributed to elements at risk were defined considering reconstruction costs, following the guidelines of the Portuguese Insurance Institute. Vulnerability is considered as the degree of loss to a given element resulting from the occurrence of a landslide of a given magnitude. Vulnerability depends not only on structural properties of exposed elements, but also on the type of process, and its magnitude; i.e., vulnerability cannot be defined in absolute terms, but only with respect to a specific process (e.g. vulnerability to shallow translational slides). Therefore, vulnerability was classified for the three landslide groups considered on hazard assessment, taking into account: (i) landslide magnitude (mean depth, volume, velocity); (ii) damage levels produced by past landslide events in the study area; and (iii) literature. Finally, a landslide risk analysis considering direct costs was made in an automatic way crossing the following three layers: (i) Probabilistic hazard map for a landslide type Z, considering a particular rainfall triggering scenario whose return period is known; (ii) Vulnerability map (values from 0 to 1) of the exposed elements to landslide type Z; and (iii) Value map of the exposed elements, considering reconstruction costs.  相似文献   

15.
Lacustrine sediments have been widely used to investigate past climatic and environmental changes on millennial to seasonal time scales. Sedimentary archives of lakes in mountainous regions may also record non-climatic events such as earthquakes. We argue herein that a set of 64 annual laminae couplets reconciles a stratigraphically inconsistent accelerator mass spectrometry (AMS) 14C chronology in a ~4-m-long sediment core from Lake Mengda, in the north-eastern Tibetan Plateau. The laminations suggest the lake was formed by a large landslide, triggered by the 1927 Gulang earthquake (M = 8.0). The lake sediment sequence can be separated into three units based on lithologic, sedimentary, and isotopic characteristics. Starting from the bottom of the sequence, these are: (1) unweathered, coarse, sandy valley-floor deposits or landslide debris that pre-date the lake, (2) landslide-induced, fine-grained soil or reworked landslide debris with a high organic content, and (3) lacustrine sediments with low organic content and laminations. These annual laminations provide a high-resolution record of anthropogenic and environmental changes during the twentieth century, recording enhanced sediment input associated with two phases of construction activities. The high mean sedimentation rates of up to 4.8 mm year?1 underscore the potential for reconstructing such distinct sediment pulses in remote, forested, and seemingly undisturbed mountain catchments.  相似文献   

16.
A quantitative procedure for mapping landslide risk is developed from considerations of hazard, vulnerability and valuation of exposed elements. The approach based on former work by the authors, is applied in the Bajo Deba area (northern Spain) where a detailed study of landslide occurrence and damage in the recent past (last 50 years) was carried out. Analyses and mapping are implemented in a Geographic Information System (GIS).The method is based on a susceptibility model developed previously from statistical relationships between past landslides and terrain parameters related to instability. Extrapolations based on past landslide behaviour were used to calculate failure frequency for the next 50 years. A detailed inventory of direct damage due to landslides during the study period was carried out and the main elements at risk in the area identified and mapped. Past direct (monetary) losses per type of element were estimated and expressed as an average ‘specific loss’ for events of a given magnitude (corresponding to a specified scenario). Vulnerability was assessed by comparing losses with the actual value of the elements affected and expressed as a fraction of that value (0–1).From hazard, vulnerability and monetary value, risk was computed for each element considered. Direct risk maps (€/pixel/year) were obtained and indirect losses from the disruption of economic activities due to landslides assessed. The final result is a risk map and table combining all losses per pixel for a 50-year period. Total monetary value at risk for the Bajo Deba area in the next 50 years is about 2.4 × 106 Euros.  相似文献   

17.
Representative rainfall thresholds for landslides in the Nepal Himalaya   总被引:14,自引:0,他引:14  
Measuring some 2400 km in length, the Himalaya accommodate millions of people in northern India and Pakistan, Nepal, Bhutan, and parts of other Asian nations. Every year, especially during monsoon rains, landslides and related natural events in these mountains cause tremendous damage to lives, property, infrastructure, and environment. In the context of the Himalaya, however, the rainfall thresholds for landslide initiation are not well understood. This paper describes regional aspects of rainfall thresholds for landslides in the Himalaya. Some 677 landslides occurring from 1951 to 2006 were studied to analyze rainfall thresholds. Out of the 677 landslides, however, only 193 associated with rainfall data were analyzed to yield a threshold relationship between rainfall intensity, rainfall duration, and landslide initiation. The threshold relationship fitted to the lower boundary of the field defined by landslide-triggering rainfall events is = 73.90D− 0.79 (I = rainfall intensity in mm h− 1 and = duration in hours), revealing that when the daily precipitation exceeds 144 mm, the risk of landslides on Himalayan mountain slopes is high. Normalized rainfall intensity–duration relationships and landslide initiation thresholds were established from the data after normalizing rainfall-intensity data with respect to mean annual precipitation (MAP) as an index in which NI = 1.10D− 0.59 (NI = normalized intensity in h− 1). Finally, the role of antecedent rainfall in causing landslides was also investigated by considering daily rainfall during failure and the cumulative rainfall to discover at what point antecedent rainfall plays an important role in Himalayan landslide processes. Rainfall thresholds presented in this paper are generalized so they can be used in landslide warning systems in the Nepal Himalaya.  相似文献   

18.
Kinematics of a landslide derived from archival photogrammetry and GPS data   总被引:3,自引:0,他引:3  
P. Baldi  N. Cenni  M. Fabris  A. Zanutta   《Geomorphology》2008,102(3-4):435-444
The evolution of the Patigno landslide, a deep-seated gravitational slope deformation in the Northern Apennine range (Italy), was investigated using archival photogrammetry, and GPS observations from a permanent station located inside the landslide. Historical aerial photographs of the area taken in 1975 (scale 1:13,000), 1987 (1:13,000) and 2004 (1:30,000) were co-registered into the same reference frame using an unconventional method based on the detection of homologous points in multi-temporal models. Three DTMs were produced using a Digital Photogrammetric Workstation and compared. The displacement vectors of 293 points in the landslide were determined. The average movement velocity of the GPS station since 2004 (about 3.5 cm yr− 1) agrees with the mean displacement rate obtained from photogrammetry. Furthermore, the estimated velocity varies seasonally between 3 and 6 cm yr− 1. This variability correlated with rainfall suggests that the creep of the landslide is influenced by hydrological factors.  相似文献   

19.
Landslides are frequent natural disasters in mountainous regions, particularly in the Himalayas in India during the southwest monsoon season. Although scientific study of landslides has been in progress for years, no significant achievement has been made to preclude landsliding and allay disasters. This research was undertaken to understand the areal distribution of landslides based on geological formations and geomorphological processes, and to provide more precise information regarding slope instability and mechanisms of failure. After completing a landslide inventory, prepared through field investigation and satellite image analysis, 493 landslides, comprising 131 investigated in the field and 362 identified from satellite imagery, were identified and mapped. The areal distribution of these landslides shows that sites more prone to landsliding have moderate to steep slopes, the lithology of the Lesser Himalayan formations, and excavations for road corridors. Landslide susceptibility zones were delineated for the area using the weight-of-evidence method on the basis of the frequency and distribution of landslides. Weights of selected variables were computed on the basis of severity of triggering factors. The accuracy of landslide susceptibility zones, calculated statistically (R2 = .93), suggests high accuracy of the model for predicting landsliding in the area.  相似文献   

20.
Monitoring and assessment of landslide hazard is an important task for decision making and policy planning in the landslide area. Massive landslides, caused by the catastrophic Chi‐Chi earthquake in 1999, occurred in Central Taiwan, especially at Chiufenershan area in Nantou county. This study proposed two useful indicators coupled with the Self‐organizing map (SOM) neural network and the Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEE) technique to quickly extract accurate post‐quake landslides from multi‐temporal Système Probatoire de l'Observation de la Terre (SPOT) images. A GIS‐based system was developed to simplify and integrate the procedures such as image pre‐processing, the SOM training, the PROMETHEE calculation, landslide extraction and accuracy assessment. The evaluated result shows that the landslide area soon after the earthquake is 209.50 ha (Kappa coefficient 96.88%). Over seven years of vegetation recovery, the denudation area has declined to 112.64 ha (Kappa coefficient 90.64%). Most earthquake‐induced landslides could be restored by natural vegetation succession. The developed system is a useful decision‐making tool for landslide area planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号