首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of climate change on agriculture has received wide attention by the scientific community. This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional "yield impact of meteorological factor (YIMF)" or "yield impact of weather factor" to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore, the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China, and the results show that it has an encouraging application outlook.  相似文献   

2.
3.
The Agricultural Production System Simulator-Wheat model was used to test the sensitivity of wheat cropping system in NSW to a range of changes in temperature, rainfall and atmospheric carbon dioxide concentration based on wheat cultivars Sunvale and Janz under two extreme soil types (kandosol and sand) at six locations. Seven change levels (from 0 to 6°C at an interval of 1°C) in temperature, five change levels (from ?20 to 20 % at an interval of 10 %) in rainfall and three change levels (0, 171 and 316 ppm) in atmospheric pCO2 were taken into account. It was found that there was a negative relationship between median grain yield and temperature while there were positive correlations of median grain yield with atmospheric pCO2 and rainfall across all locations and soils considered. It was also found that the rate of decrease in median grain yield was more for higher temperatures in contrast to lower temperatures, and the rate of increase in median grain yield was less for higher rainfall and pCO2 compared with the lower levels of these two variables. This study showed that environmental factors have significant effects on wheat grain yield, with soil as the most important factor, followed by site (reflecting both soil and climate), changes in atmospheric CO2, rainfall and temperature. This study also showed that rainfall was more important under sandy soil conditions than under kandosol soil conditions. These findings provided a sound basis for preliminary scoping and prioritising adaptation options.  相似文献   

4.
The impacts of climate change on agriculture may add significantly to the development challenges of ensuring food security and reducing poverty. We show the possible impacts on maize production in Africa and Latin America to 2055, using high-resolution methods to generate characteristic daily weather data for driving a detailed simulation model of the maize crop. Although the results indicate an overall reduction of only 10% in maize production to 2055, equivalent to losses of $2 billion per year, the aggregate results hide enormous variability: areas can be identified where maize yields may change substantially. Climate change urgently needs to be assessed at the level of the household, so that poor and vulnerable people dependent on agriculture can be appropriately targeted in research and development activities whose object is poverty alleviation.  相似文献   

5.
With the continuing warming due to greenhouse gases concentration, it is important to examine the potential impacts on regional crop production spatially and temporally. We assessed China’s potential maize production at 50 × 50 km grid scale under climate change scenarios using modelling approach. Two climate changes scenarios (A2 and B2) and three time slices (2011–2040, 2041–2070, 2071–2100) produced by the PRECIS Regional Climate Model were used. Rain-fed and irrigated maize yields were simulated with the CERES-Maize model, with present optimum management practices. The model was run for 30 years of baseline climate and three time slices for the two climate change scenarios, without and with simulation of direct CO2 fertilization effects. Crop simulation results under climate change scenarios varied considerably between regions and years. Without the CO2 fertilization effect, China’s maize production was predicted to suffer a negative effect under both A2 and B2 scenarios for all time slices, with greatest production decreases in today’s major maize planting areas. When the CO2 fertilization effect is taken into account, production was predicted to increase for rain-fed maize but decrease for irrigated maize, under both A2 and B2 scenarios for most time periods.  相似文献   

6.
In the North China Plain, the grain yield of irrigated wheat-maize cropping system has been steadily increasing in the past decades under a significant warming climate. This paper combined regional and field data with modeling to analyze the changes in the climate in the last 40 years, and to investigate the influence of changes in crop varieties and management options to crop yield. In particular, we examined the impact of a planned adaptation strategy to climate change -“Double-Delay” technology, i.e., delay both the sowing time of wheat and the harvesting time of maize, on both wheat and maize yield. The results show that improved crop varieties and management options not only compensated some negative impact of reduced crop growth period on crop yield due to the increase in temperature, they have contributed significantly to crop yield increase. The increase in temperature before over-wintering stage enabled late sowing of winter wheat and late harvesting of maize, leading to overall 4–6% increase in total grain yield of the wheat-maize system. Increased use of farming machines and minimum tillage technology also shortened the time for field preparation from harvest time of summer maize to sowing time of winter wheat, which facilitated the later harvest of summer maize.  相似文献   

7.
Summary The crop growth model CERES-Maize is used to estimate the direct (through enhanced fertilisation effect of ambient CO2) and indirect (through changed climate conditions) effects of increased concentration of atmospheric CO2 on maize yields. The analysis is based on multi-year crop model simulations run with daily weather series obtained alternatively by a direct modification of observed weather series and by a stochastic weather generator. The crop model is run in two settings: stressed yields are simulated in water and nutrient limited conditions, potential yields in water and nutrient unlimited conditions. The climate change scenario was constructed using the output from the ECHAM3/T42 model (temperature), regression relationships between temperature and solar radiation, and an expert judgement (precipitation). Results: (i) After omitting the two most extreme misfits, the standard error between the observed and modelled yields is 11%. (ii) The direct effect of doubled CO2: The stressed yields would increase by 36–41% in the present climate and by 61–66% in the 2 × CO2 climate. The potential yields would increase only by 9–10% as the improved water use efficiency does not apply. (iii) The indirect effect of doubled CO2: The stressed yields would decrease by 27–29% (14–16%) at present (doubled) ambient CO2 concentration. The increased temperature shortens the phenological phases and does not allow for the optimal development of the crop. The simultaneous decrease of precipitation and increase of temperature and solar radiation deepen the water stress, thereby reducing the yields. The reduction of the potential yields is significantly smaller as the effect of the increased water stress does not apply. (iv) If both direct and indirect effects of doubled CO2 are considered, the stressed yields should increase by 17–18%, and the potential yields by 5–14%. (v) The decrease of the stressed yields due to the indirect effect may be reduced by applying earlier planting dates. Received March 9, 2001 Revised September 25, 2001  相似文献   

8.
This paper explores the value of using community risk assessments (CRAs) for climate change adaptation. CRA refers to participatory methods to assess hazards, vulnerabilities and capacities in support of community-based disaster risk reduction, used by many NGOs, community-based organizations, and the Red Cross/Red Crescent. We review the evolution of climate change adaptation and community-based disaster risk reduction, and highlight the challenges of integrating global climate change into a bottom-up and place-based approach. Our analysis of CRAs carried out by various national Red Cross societies shows that CRAs can help address those challenges by fostering community engagement in climate risk reduction, particularly given that many strategies to deal with current climate risks also help to reduce vulnerability to climate change. Climate change can also be explicitly incorporated in CRAs by making better use of CRA tools to assess trends, and by addressing the notion of changing risks. However, a key challenge is to keep CRAs simple enough for wide application. This demands special attention in the modification of CRA tools; in the background materials and trainings for CRA facilitators; and in the guidance for interpretation of CRA outcomes. A second challenge is the application of a limited set of CRA results to guide risk reduction in other communities and to inform national and international adaptation policy. This requires specific attention for sampling and care in scaling up qualitative findings. Finally, stronger linkages are needed between organizations facilitating CRAs and suppliers of climate information, particularly addressing the translation of climate information to the community level.  相似文献   

9.
Theoretical and Applied Climatology - Climate change affects the viticulture sector worldwide in different ways, some countries reporting negative impacts, other positive effects, depending on the...  相似文献   

10.
11.
We evaluated the potential impact of future climate change on spring maize and single-crop rice in northeastern China(NEC) by employing climate and crop models. Based on historical data, diurnal temperature change exhibited a distinct negative relationship with maize yield, whereas minimum temperature correlated positively to rice yield. Corresponding to the evaluated climate change derived from coupled climate models included in the Coupled Model Intercomparison Project Phase 5(CMIP5) under the Representative Concentration Pathway 4.5 scenario(RCP4.5), the projected maize yield changes for three future periods [2010–39(period 1), 2040–69(period 2), and 2070–99(period 3)] relative to the mean yield in the baseline period(1976–2005) were 2.92%, 3.11% and 2.63%, respectively. By contrast, the evaluated rice yields showed slightly larger increases of 7.19%, 12.39%, and 14.83%, respectively. The uncertainties in the crop response are discussed by considering the uncertainties obtained from both the climate and the crop models. The range of impact of the uncertainty became markedly wider when integrating these two sources of uncertainty. The probabilistic assessments of the evaluated change showed maize yield to be relatively stable from period 1 to period 3, while the rice yield showed an increasing trend over time. The results presented in this paper suggest a tendency of the yields of maize and rice in NEC to increase(but with great uncertainty) against the background of global warming, which may offer some valuable guidance to government policymakers.  相似文献   

12.
The preference rankings of a rural population in central British Columbia, Canada of potential environmental effects of climate change were assessed using the psychometric method of paired comparison. The survey results were used to develop an interval scale for eight hypothetical, but potential, environmental effects including major and minor impacts to water and fish, forest ecosystems, wildlife, and scenic and recreation. Interval scales were developed for the total sample as well as sub-samples made up of females, males, town residents, non-town residents, respondents with high school or less education, and respondents with at least some post-secondary education. Major impacts on water and fish were considered to be the most serious effects followed by major impacts on forest ecosystems and major impacts on wildlife. Major effects on scenic and recreation were ranked below minor effects on water and fish. Responses from the sub-samples were similar with some minor deviations. For example, females ranked major impacts on wildlife higher than males, and males ranked major impact on scenic and recreation higher than females. However, the overall rankings of females and males were highly correlated. This study showed climate change effects on environmental goods and services in terms of human preferences. A human preferences perspective (combined with biophysical assessments) is required for determining local adaptation priorities and for guiding impacts and adaptation research. The methodology and approach has potential for broader application.  相似文献   

13.
基于1959—2019年气象站观测资料和2011—2020年覆盆子产量资料,分析了江西省德兴市农业气候变化及其对覆盆子产量的影响。结果表明,与覆盆子产量显著相关的气象因子分别为无霜期日数、稳定通过10 ℃初终日期间隔日数、稳定通过10 ℃积温、年极端最低气温和3月极端最低气温。5个气象因子总体呈上升趋势,但阶段性特征不同。稳定通过10 ℃积温在1980—1989年呈减少趋势,其他时段均呈增加趋势;年极端最低气温在1960—1969年和2000—2009年呈略下降趋势,其他时段呈升高趋势;1990年以前,无霜期日数、稳定通过10 ℃初终日间隔日数和3月极端最低气温总体呈下降趋势,对覆盆子生长不利,而1990年以后呈显著上升趋势,有利于覆盆子生长。  相似文献   

14.
Simulated impacts of global and regional climate change, induced by an enhanced greenhouse effect and by Amazonian deforestation, on the phenology and yield of two grain corn cultivars in Venezuela (CENIAP PB-8 and OBREGON) are reported. Three sites were selected:Turén, Barinas andYaritagua, representing two important agricultural regions in the country. The CERES-Maize model, a mechanistic process-based model, in theDecision Support System for Agrotechnology Transfer (DSSAT) was used for the crop simulations. These simulations assume non-limiting nutrients, no pest damage and no damage from excess water; therefore, the results indicate only the difference between baseline and perturbed climatic conditions, when other conditions remain the same. Four greenhouse-induced global climate change scenarios, covering different sensitivity levels, and one deforestation-induced regional climate change scenario were used. The greenhouse scenarios assume increased air temperature, increased rainfall and decreased incoming solar radiation, as derived from atmospheric GCMs for doubled CO2 conditions. The deforestation scenarios assume increased air temperature, increased incoming solar radiation and decreased rainfall, as predicted by coupled atmosphere-biosphere models for extensive deforestation of a portion of the Amazon basin. Two baseline climate years for each site were selected, one year with average precipitation and another with lower than average rainfall. Scenarios associated with the greenhouse effect cause a decrease in yield of both cultivars at all three sites, while the deforestation scenarios produce small changes. Sensitivity tests revealed the reasons for these responses. Increasing temperatures, especially daily maximum temperatures, reduce yield by reducing the duration of the phenological phases of both cultivars, as expected from CERES-Maize. The reduction of the duration of the kernel filling phase has the largest effect on yield. Increases of precipitation associated with greenhouse warming have no effects on yield, because these sites already have adequate precipitation; however, the crop model used here does not simulate potential negative effects of excess water, which could have important consequences in terms of soil erosion and nutrient leaching. Increases in solar radiation increased yields, according to the non-saturating light response of the photosynthesis rate of a C4 plant like corn, compensating for reduced yields from increased temperatures in deforestation scenarios. In the greenhouse scenarios, reduced insolation (due to increased cloud cover) and increased temperatures combine to reduce yields; a combination of temperature increase with a reduction in solar radiation produces fewer and lighter kernels.A report of thePAN-EARTH Project, Venezuela Case Study.  相似文献   

15.
16.
Dynamic adaptation of maize and wheat production to climate change   总被引:2,自引:0,他引:2  
  相似文献   

17.
Northeast China (NEC) is one of the major agricultural production areas in China and also an obvious region of climate warming. We were motivated to investigate the impacts of climate warming on the northern limits of maize planting. Additionally, we wanted to assess how spatial shifts in the cropping system impact the maize yields in NEC. To understand these impacts, we used the daily average air temperature data in 72 weather stations and regional experiment yield data from Jilin Province. Averaged across NEC, the annual air temperature increased by 0.38 °C per decade. The annual accumulated temperature above 10 °C (AAT10) followed a similar trend, increased 66 °C d per decade from 1961 to 2007, which caused a northward expansion of the northern limits of maize. The warming enabled early-maturing maize hybrids to be sown in the northern areas of Heilongjiang Province where it was not suitable for growing maize before the warming. In the southern areas of Heilongjiang Province and the eastern areas of Jilin Province, the early-maturing maize hybrids could be replaced by the middle-maturing hybrids with a longer growing season. The maize in the northern areas of Liaoning Province was expected to change from middle-maturing to late-maturing hybrids. Changing the hybrids led to increase the maize yield. When the early-maturing hybrids were replaced by middle-maturing hybrids in Jilin Province, the maize yields would increase by 9.8 %. Similarly, maize yields would increase by 7.1 % when the middle-maturing hybrids were replaced by late-maturing hybrids.  相似文献   

18.
Managing risks from extreme events will be a crucial component of climate change adaptation. In this study, we demonstrate an approach to assess future risks and quantify the benefits of adaptation options at a city-scale, with application to flood risk in Mumbai. In 2005, Mumbai experienced unprecedented flooding, causing direct economic damages estimated at almost two billion USD and 500 fatalities. Our findings suggest that by the 2080s, in a SRES A2 scenario, an ??upper bound?? climate scenario could see the likelihood of a 2005-like event more than double. We estimate that total losses (direct plus indirect) associated with a 1-in-100 year event could triple compared with current situation (to $690?C$1,890 million USD), due to climate change alone. Continued rapid urbanisation could further increase the risk level. The analysis also demonstrates that adaptation could significantly reduce future losses; for example, estimates suggest that by improving the drainage system in Mumbai, losses associated with a 1-in-100 year flood event today could be reduced by as much as 70%.,We show that assessing the indirect costs of extreme events is an important component of an adaptation assessment, both in ensuring the analysis captures the full economic benefits of adaptation and also identifying options that can help to manage indirect risks of disasters. For example, we show that by extending insurance to 100% penetration, the indirect effects of flooding could be almost halved. We conclude that, while this study explores only the upper-bound climate scenario, the risk-assessment core demonstrated in this study could form an important quantitative tool in developing city-scale adaptation strategies. We provide a discussion of sources of uncertainty and risk-based tools could be linked with decision-making approaches to inform adaptation plans that are robust to climate change.  相似文献   

19.
ARPEGE general circulation model simulations were dynamically downscaled by The Weather Research and Forecasting Model (WRF) for the study of climate change and its impact on grapevine growth in Burgundy region in France by the mid twenty-first century. Two time periods were selected: 1970–1979 and 2031–2040. The WRF model driven by ERA-INTERIM reanalysis data was validated against in situ surface temperature observations. The daily maximum and minimum surface temperature (Tmax and Tmin) were simulated by the WRF model at 8?×?8?km horizontal resolution. The averaged daily Tmax for each month during 1970–1979 have good agreement with observations, the averaged daily Tmin have a warm bias about 1–2?K. The daily Tmax and Tmin for each month (domain averaged) during 2031–2040 show a general increase. The largest increment (~3?K) was found in summer. The smallest increments (<1?K) were found in spring and fall. The spatial distribution of temperature increment shows a strong meridional gradient, high in south in summer, reversing in winter. The resulting potential warming rate in summer is equivalent to 4.7?K/century under the IPCC A2 emission scenario. The dynamically downscaled Tmax and Tmin were used to simulate the grape (Pinot noir grape variety) flowering and véraison dates. For 2031–2040, the projected dates are 8 and 12?days earlier than those during 1970–1979, respectively. The simulated hot days increase more than 50% in the two principal grapevine regions. They show strong impact on Pinot noir development.  相似文献   

20.
In Thailand, the world's largest rice exporter, rice constitutes a major export on which the economy of the whole country depends. Climate change could affect rice growth and development and thus jeopardize Thailand's wealth. Current climatic conditions in Thailand are compared to predictions from four general circulation models (GCMs). Temperature predictions correlate well with the observed values. Predictions of monthly rainfall correlate poorly. Virtually all models agree that significant increases in temperature (from 1 to 7 °C) will occur in the region including Thailand following a doubling in atmospheric carbon dioxide (CO2) concentration. The regional seasonality and extent of the rise in temperature varies with each model. Predictions of changes in rainfall vary widely between models. Global warming should in principle allow a northward expansion of rice-growing areas and a lengthening of the growing season now constrained by low temperatures. The expected increase in water-use efficiency due to enhanced CO2 might decrease the water deficit vulnerability of dryland rice areas and could make it possible to slightly expand them.The research described in this article has been funded by the U.S. Environmental Protection Agency (EPA). This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, Oregon, through contract # 68-C8-0006 to ManTech Environmental Technology, Inc. It has been subjected to the Agency's peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号