首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We explore the conditions for resonance between cometary pick-up ions and parallel propagating electromagnetic waves. A model ring—beam distribution for the pick-up H2O+ ions is adopted which allows a direct comparison of the source of free energy for growth from either the beam or the gyrating ring in the limit near marginal stability. Under average solar wind conditions in the inner solar system, the gyrating ring provides the dominant contribution to wave growth. The presence of a field-aligned beam is only important to allow resonance with R-mode waves which occur in two distinct frequency bands either well above or below the pick-up ion gyrofrequency. The most unstable mode is the low frequency R-mode or fast MHD wave, though higher frequency whistlers or low frequency L-mode waves may also be excited by the same source of free energy. The nature of the unstable waves is strongly influenced by the inclination of the interplanetary field. For 3° the rate of the low frequency R-mode growth is dramatically reduced and resonant L-mode waves should experience net ion beam damping. Conversely for 75°, the ion beam velocity will be insufficient to allow resonant R-mode instability; L-mode waves should therefore predominate. The low frequency fast MHD mode should experience the most rapid amplification for intermediate inclination; 30° 75°. In the frame of the solar wind such waves must propagate along the field in the direction upstream towards the Sun with a phase speed lower than the beaming velocity of the pick-up ions. The waves are consequently blown back away from the Sun and would thus be detected with a left-hand polarization by an observer in the cometary frame. We consider this the most likely mechanism to account for the interior MHD waves observed by satellites over an extended spatial region surrounding comets Giacobini-Zinner and Halley.  相似文献   

2.
In an electron beam emission experiment on board the EXOS-B (JIKIKEN) satellite (200 V, 1 mA-maximum), several types of waves are strongly excited by the beam such as plasma frequency, upper hybrid frequency, electron cyclotron frequency, their harmonics and nonlinear coupling of these waves. Measurements of these waves give information on local plasma density and magnetic field strength and it is revealed that the electron beam emission from the spacecraft is a powerful diagnostic tool in the magnetosphere. A long term observation in this electron beam experiment has provided us with the average plasma density profile in the magnetosphere. It is also useful for the detection of the plasmapause. Plasma density measurements down to the order of 10 cm–3 are possible. The instrument itself is very simple and compact, so that it will be a powerful plasma diagnostic tool in future magnetospheric and planetary explorations.  相似文献   

3.
We develop a theory for radar signal scattering by anisotropic Langmuir turbulence in the solar corona due to a t+lt process. Langmuir turbulence is assumed to be generated within a cone by a narrow type III burst electron beam. Using wave-kinetic theory we obtain expressions for the frequency shift, scattering cross-section of the turbulence, coefficient of absorption (due to scattering) and optical depth. On the basis of those expressions we give some estimates for an echo spectrum. We show that the minimum radar echo frequency shift is determined by the minimal phase velocity of the Langmuir waves, the maximum shift is determined by the electron beam velocity, but in any case it can not exceed −wt/2 (decay) and wt (coalescence), where wt is the frequency of a radar signal. The angular characteristics of the scattered signal differ dramatically for the cases of coalescence and decay. The signal is scattered into a narrow cone high above the specular reflection point (wp ≪ wt), but in the vicinity of wp ∼ wt/2 the red-shifted echo is scattered isotropically, while the blue-shifted echo is scattered into a even narrower cone. We show that absorption (due to scattering) increases with increasing radar frequency. The dependence of the absorption on the local plasma frequency is strongly determined by the Langmuir turbulence spectrum. Our theory shows that the role of the nonlinear scattering process t+lt is essential and that such process can be used for radar studies of the spectral energy density of anisotropic Langmuir turbulence.  相似文献   

4.
The POLAR 5 sounding rocket, launched from Andøya, Norway on 1 February, 1976 was of a “mother-daughter” configuration. An electron accelerator, mounted on the “daughter,” produced a pulsed electron beam with currents up to 130 mA and electron energies up to 10 keV. The waves, artificially stimulated by the injected electron beam, was studied using wave receivers, mounted on the “mother.” The receivers covered the frequency range from 0.1 kHz to 5 MHz.

In addition to the stimulated waves observed during beam injection, enhanced wave emissions were observed 10–20 ms after the end of beam injection. This emission seemed to be relatively independent of whether the electron beam is launched up or down along the geomagnetic field.

The high frequency emission observed after beam injection is found to be correlated with the passage through an auroral arc. In particular this emission is closely correlated with the flux of 4–5 keV auroral electrons.

The low frequency emissions observed after beam injection are concentrated in two bands below the lower hybrid frequency.

Different mechanisms for explaining the observed time delays between the beam injection and the observation of the emissions are discussed.  相似文献   


5.
Kontar  Eduard P. 《Solar physics》2001,202(1):131-149
Dynamics of a spatially-limited electron beam in the inhomogeneous solar corona plasma is considered in the framework of weak turbulence theory when the temperature of the beam significantly exceeds that of surrounding plasma. The numerical solution of kinetic equations manifests that generally the beam accompanied by Langmuir waves propagates as a beam-plasma structure with a decreasing velocity. Unlike the uniform plasma case the structure propagates with the energy losses in the form of Langmuir waves. The results obtained are compared with the results of observations of type III bursts. It is shown that the deceleration of type III sources can be explained by corona inhomogeneity. The frequency drift rates of the type III sources are found to be in good agreement with the numerical results of beam dynamics.  相似文献   

6.
The expression for nonlinear shift of a wave number of a whistler wave propagating through the ionosphere has been derived and the results have been discussed. It is seen that nonlinear shift of a wave number of a whistler is significant in some physical situations. From numerical estimations it is observed that wave number shifts of a whistler for both the LCP and RCP waves become significant when the frequency of the waves are nearly equal to the ion-cyclotron frequency.  相似文献   

7.
Stability criteria for parallel propagating plasma waves driven unstable by a nearly isotropic bump-in-energy “half-shell” beam of electrons along a magnetic field are investigated. Comparison with the drifting Maxwellian at equal densities reveals smaller growth rates for the half-shell and a shift in the unstable wavenumbers towards smaller phase velocities. The limit of complete isotropy is stable to the waves under consideration.  相似文献   

8.
张军海 《天文学进展》2005,23(4):379-382
介绍了光抽运铯束管的光频移测量的原理和结果,并对结果进行了简要的分析,估算了射入Ramsey腔的相应光强。产生散射光光频移的原因是抽运光和检测光通过漫反射进入微波腔的漂移区与铯原子相互作用所致。  相似文献   

9.
The foreshock region of a CME shock front, where shock accelerated electrons form a beam population in the otherwise quiescent plasma is generally assumed to be the source region of type II radio bursts. Nonlinear wave interaction of electrostatic waves excited by the beamed electrons are the prime candidates for the radio waves’ emission. To address the question whether a single, or two counterpropagating beam populations are a requirement for this process, we have conducted 2.5D particle-in-cell simulations using the fully relativistic ACRONYM code. Results show indications of three-wave interaction leading to electromagnetic emission at the fundamental and harmonic frequency for the two-beam case. For the single-beam case, no such signatures were detectable.  相似文献   

10.
T. Takakura 《Solar physics》1979,62(2):375-382
On the basis of the previous numerical simulations, a new mechanism for the emission of the fundamental radio waves of solar radio type III bursts is presented. This hypothesis is to attribute the fundamental radio emission to the coalescence of the plasma waves with the low frequency turbulence, whistler or ion acoustic waves, pre-existing on the way of the electron beam which excite the plasma waves.It is estimated that ion acoustic waves could be occasionally unstable in the solar corona due to that drifting bi-Maxwellian distribution of electrons as observed in the solar wind, which is probably caused by collision-less heat conduction.It is also suggested that the reduced damping of the ion acoustic waves in such a distorted electron distribution in the corona may decrease the threshold electric current to cause the anomalous resistivity to be the onset of the solar flares.  相似文献   

11.
A previous study of electromagnetic radiation from a finite train of electron pulses is extended to an infinite train of such pulses. The electrons are assumed to follow an idealized helical path through a space plasma in such a manner as to retain their respective position within the beam. This leads to radiation by coherent spontaneous emission. The waves of interest in this region are the whistler slow (compressional) and fast (torsional) Alfvén waves. Although a general theory is developed, analysis is then restricted to two approximations, the short and long electron beam. Formulas for the radiation per unit solid angle from the short beam are presented as a function of both propagation and ray angles, electron beam pulse width and separation and beam current, voltage, and pitch angle. Similar formulas for the total power radiated from the long beam are derived as a function of frequency, propagation angle, and ray angle. Predictions of the power radiated are presented for representative examples as determined by the long beam theory.  相似文献   

12.
利用多普勒频移效应,通过线宽2MHz窄线宽激光与锶原子束在大角度作用下的荧光信号分析,测量了锶原子束速率分布。比较和分析表明,理论结果与实验结果符合较好。  相似文献   

13.
On the hypothesis that the time profile of a type III burst corresponds directly to the flux of electron beam, the similarity of time profile is shown to be maintained even if the electron velocity decreases with distance provided that the time is normalized to unity at the time of maximum flux. The observed time profiles of type III bursts with simple shape seem to follow the similarity law in almost all frequency range. This evidence may indicate that the time profile, both the rising and decaying phases, of a type III burst should be attributed to a common origin, e.g., the time variation of exciter determined by the initial velocity distribution in the electron beam, instead of attributing the rising time to the beam length and the decay time to the damping of plasma waves after the passage of the electron beam.  相似文献   

14.
本文在用MHD理论研究等离子体束流不稳定性时发现:在电子等离子体频率附近可以激发出宽频带电磁波,其时间尺度、方向性、相对带宽、偏振特性及谐波结构等理论预期,在典型的日冕参数下,和米波段太阳射电Ⅲ型爆发的观测结果基本吻合.这一机制还可避免经典的等离子体辐射理论中由Langmuir波转换成横电磁波的效率较低的主要困难.  相似文献   

15.
V. G. Ledenev 《Solar physics》2008,253(1-2):191-198
If plasma waves propagate in the direction of the plasma density decrease, their spectrum shifts to large wave numbers (to small phase velocities). This means that the spectrum of plasma waves excited by an electron beam concentrates near the distribution function (“plateau”) border, which shifts in the region of low velocities in the process of quasilinear relaxation. As the spectrum of excited plasma waves shifts in the region of large wave numbers, their frequency grows in accordance with the dispersion equation, which describes these waves. When the growth of the plasma wave frequency exceeds the decrease of the frequency owing to the regular inhomogeneity in the corona, the branch with positive frequency drift appears on the dynamic spectrum of the radio emission. Our computations allow us to estimate the density and energy of electron beams generating type U bursts.  相似文献   

16.
T. Takakura 《Solar physics》1982,75(1-2):277-292
It is demonstrated by a numerical simulation that both the whistler waves and plasma waves are excited by a common solar electron beam. The excitation of the whistler waves is ascribed to the loss-cone distribution which arises at a later phase of the passage of the beam at a given height due to a velocity dispersion in the electron beam with a finite length. It is highly probable that the fundamental of type III bursts are caused by the coalescence of the whistler waves and the plasma waves excited by a common electron beam, although the plasma waves must suffer induce scatterings by thermal ions to have small wave numbers before the coalescence to occur.  相似文献   

17.
T. Takakura 《Solar physics》1979,61(1):161-186
A simulation of normal type III radio bursts has been made in a whole frequency range of about 200 MHz to 30 kHz by the usage of the semi-analytical method as developed in previous papers for the plasma waves excited by a cloud of fast electrons. Three-dimensional plasma waves are computed, though the velocities of fast electrons are assumed to be one-dimensional. Many basic problems about type III radio bursts and associated solar electrons have been solved showing the following striking or unexpected results.Induced scattering of plasma waves, by thermal ions, into the plasma waves with opposite wave vectors is efficient even for a solar electron cloud of rather low number density. Therefore, the second harmonic radio emission as attributed to the coalescence of two plasma waves predominates in a whole range from meter waves to km waves. Fundamental radio emission as ascribed to the scattering of plasma waves by thermal ions is negligibly small almost in the whole range. On the other hand, third harmonic radio emission can be strong enough to be observed in a limited frequency range.If, however, the time integral of electron flux is, for example, 2 × 1013 cm–2 (>5 keV) or more at the height of 4.3 × 1010 cm ( p = 40 MHz) above the photosphere, the fundamental may be comparable with or greater than the second harmonic, but an effective area of cross-section of the electron beam is required to be very small, 1017 cm2 or less, and hence much larger sizes of the observed radio sources must be attributed to the scattering alone of radio waves.The radio flux density expected at the Earth for the second harmonic can increase with decreasing frequencies giving high flux densities at low frequencies as observed, if x-dependence of the cross-sectional area of the electron beam is x 1.5 or less instead of x 2, at least at x 2 × 1012 cm.The second harmonic radio waves are emitted predominantly into forward direction at first, but the direction of emission may reverse a few times in a course of a single burst showing a greater backward emission at the low frequencies.In a standard low frequency model, a total number of solar electrons above 18 keV arriving at the Earth orbit reduces to 12% of the initial value due mainly to the collisional decay of plasma waves before the waves are reabsorbed by the beam electrons arriving later. However, no deceleration of the apparent velocity of exciter appears. A change in the apparent velocity, if any, results from a change in growth rate of the plasma waves instead of the deceleration of individual electrons.Near the Earth, the peak of second harmonic radio flux as emitted from the local plasma appears well after the passage of a whole solar electron cloud through this layer. This is ascribed to the secondary and the third plasma waves as caused in non-resonant regions by the induced scattering of primary plasma waves in a resonant region.  相似文献   

18.
P. A. Robinson 《Solar physics》1996,168(2):357-374
Energy-balance arguments are combined with the stochastic-growth theory of type III radio sources to determine the properties of the source in average dynamical equilibrium with the beam, and the beam's long-term evolution. Purely linear stochastic-growth theory has previously emphasized that the beam evolves to a state close to marginal stability. Small mean residual deviations from marginal stability are present at dynamical equilibrium and these lead to residual energy flows that feed the waves observed in situ and by remote receivers; consequently the beam energy is depleted. Here, dynamical equilibrium beam and wave levels are estimated for the first time and it is found that the main sink of beam-driven Langmuir waves is either via electrostatic decay into product Langmuir and ion-sound waves or via scattering by short-wavelength density fluctuations, depending on the conditions. Improved estimates of energy branching ratios imply that, at 1 AU from the Sun, typically 20% of the beam energy is converted to Langmuir waves that are scattered off low-frequency density fluctuations and then dissipated, with almost all the remaining waves undergoing electrostatic decay, although as little as one-third of the Langmuir waves may decay in atypical circumstances. Of order 10–3 of the beam energy is converted into sound waves, which are mostly dissipated, and of order 10–5 is converted into potentially observable electromagnetic waves. The mean lifetime of the Langmuir waves at 1 AU is 1–40 s, while that of the beam is of order 1000 s. The beam density decreases relative to that of the background as the beam propagates. For most parameters, analysis of energy losses from the beam to the waves shows that the beam velocity decreases at roughly the same rate as the thermal velocity of the background plasma. It is argued from these considerations, and from in situ observations at 1 AU, that these trends imply that only the densest and fastest type III beams will be able to penetrate much past 1 AU from the Sun. This implies a low-frequency cutoff to type III emission at roughly 10 kHz, in good agreement with recent Ulysses remote observations, showing their consistency with in situ measurements.  相似文献   

19.
The nonlinear frequency shift arising from the interaction of the quasimono- chromatic whistler-mode wave with resonant particles in an inhomogeneous plasma is derived. The modulational instability caused by this shift is investigated. The results are applied to the propagation of long-duration VLF whistler-mode signals along the magnetic field in the magnetosphere. It is shown that the modulational instability of these waves in the equatorial region leads to pulsations very similar to those observed experimentally  相似文献   

20.
T. Takakura 《Solar physics》1979,62(2):383-391
Numerical simulation for the type III solar radio bursts in meter wavelengths was made with the electron beam of a high number density enough to emit fundamental radio waves comparable in intensity with the second harmonic.This requirement is fulfilled if the optical thickness 1 for the negative absorption (amplification) becomes -23 to -25. Since 1 is roughly proportional to the time-integral of the electron flux of the beam, the intensity of the fundamental waves depends strongly on the parameters which determine the electron flux. Therefore, it is most unlikely that the harmonic pairs of type III bursts of the first and the second harmonics occur frequently with comparable intensities in a wide frequency range, say 200 MHz to 20 MHz, if we take the working hypothesis that the fundamental waves are caused by the scattering of electron plasma waves by thermal ions and amplified during the propagation along the beam.However, we cannot rule out the possibility that single type III bursts with short durations or group of such bursts are the fundamental waves emitted by the above mechanism, but only if the observed large size of the radio source can be attributed to the radio scattering alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号