首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Recently Gosling (1993) examined the interplanetary consequences of solar activity, and suggested that the coronal mass ejection (CME) was the prime driver of most disturbances (i.e., interplanetary shocks, high-energy particles, geomagnetic storms, etc.) and that the solar flare was relatively unimportant in this context. He coined the phrase Solar Flare Myth. Since that paper there has been much debate on the origin of interplanetary disturbances - most people sitting squarely in the flare or CME camp. vestka (1995) has attacked Gosling's conclusions on the grounds that it is misleading to ignore the flare, and that past flare classifications were perfectly adequate for explaining the observations described by Gosling. This paper is a comment on vestka's report and an attempt to put the Solar Flare Myth into perspective - indeed it is an attempt to view the solar flare/CME phenomena in a more constructive light.  相似文献   

2.
A complex analysis in different radio ranges of the evolutionary features of the 3 February, 1983 flare (0543-0619-0812 UT) has shown that the flare is a prolonged ( 15 hr) process of energy release and particle acceleration that gradually extends to still greater zones of the active region (AR) magnetosphere in both area and altitude. Observations from the Siberian Solar Radio Telescope obtained at = 5.2 cm indicate that the flare was preceded by quasi-periodical brightness enhancements with a period of 6–7 min of two sources of size 20 and with a brightness temperature of 107 K.During the flare maximum phase, a type II burst with harmonic structure and the subsequent type FC II continuum with fine structure were both observed in the meter band. It has been found that zebra-structure appearances correlate with the H-flare kernel brightenings at loop tops.The observed characteristics of the type II burst and of the type FC II continuum treated in this paper are interpreted in terms of the complex flare flow structure, involving forward and backward shock waves.  相似文献   

3.
Kodaikanal H monochromatic and white-light observations are used to study the circular flare of 14 March, 1984. We report here the dynamic activity of the H filament, which attained a severe twist before erupting as a 4B flare. We feel that the relative motion between the emerging spot field and its neighbouring field is responsible for the field line reconnection, which triggered the flare.  相似文献   

4.
    
We compare large-scale filtergrams of a hitherto neglected class 1B flare with previously published vector magnetograms and maps of photospheric longitudinal electric current density (Hagyard et al., 1985). The vector magnetic fields were mapped simultaneously with the eruption of this flare. We find a coincidence, to within the ±2 registration accuracy of the data, between the flare kernels and the locations of maximum shear and of peak values in the longitudinal electric current density. The kernels brighten in a way which implies that the preflare heating and the main release of flare energy are spatially coincident within the limits of resolution (2). A pronounced magnetic shear exists in the vertical direction at the location of the strongest flare kernels. We provide evidence that the electric currents could be maintained by the energy stored in the sheared transverse magnetic field and that the amount of energy released is proportional to the amount stored. These circumstances are consistent with theories in which flares are triggered by plasma instabilities due to surplus electric currents.  相似文献   

5.
Results of cooperative observations of the flare star EV Lac in September 1993 are presented. One of the about 30 optical flares detected was powerful enough to permit a quantitative analysis of its intrinsic radiation with the colour-colour technique. Sinusoidal brightness variations due to spottedness of the stellar surface was found to have an amplitude V = 0.m0.24. Behaviour of the K band stellar brightness during strong and weak U band flares are considered. The upper limits of very fast optical brightness variations were estimated during both a moderate flare and quiet state of the star. No decametric bursts were observed during the campaign that could be certainly attributed to flare activity.  相似文献   

6.
We study the spatial and spectral characteristics of the 3.5 to 30.0 keV emission in a solar flare of 9 May, 1980. We find that: (a) A classical thick target interpretation of the hard X-ray burst at energies E 10 keV implies that approximately all the electrons contained within the flare loop(s) have to be accelerated per second. (b) A thermal model interpretation does not fit the data, unless its characteristics are such that it does not represent an efficient alternative to the acceleration model. We thus conclude that: (c) Acceleration does take place during the early phase of the impulsive hard X-ray event, but substantial amount of the emission at low (<20 keV) energies is of thermal origin. (d) We show the evolution of the energy content in the flare volume, and find that the energy input requirements are such that 102 erg cm-3 s-1 have to be released within the flare structure(s), for a period of time comparable to that of the hard X-ray burst emission. We also point out that although the main flare component ( 90% of the soft X-ray emission) was confined to a compact magnetic kernel, there are evidences of interaction of this structure with a larger field structure connecting towards the leading portion of the active region, where secondary H brightenings were observed.  相似文献   

7.
An analysis of the growth of X-ray loops in the flare of 21 May, 1980, observed by HXIS on board SMM spacecraft, has been carried out with high time resolution in six energy channels from 3.5 to 30 keV. This analysis has revealed that the tops of the loops stay for minutes at a given altitude before, quite abruptly, other loop tops begin to appear above them. One of the jumps in altitude, from 27 000 to 45 000 km if the loops extended radially, which occurred quite late in the flare development, is studied in detail. The fact that the tops, of higher loops were first seen in the 22–30 keV energy channel, and only minutes later at lower energies, suggests a new release of energy in a very small volume high in the corona. An initial temperature of at least 50 × 106 K is indicated by the data, inside a volume which may not exceed a few hundred km in diameter. A magnetic reconnection of previously distended field lines appears to be a likely candidate for the observed phenomenon.We also give some revised values of the characteristic parameters of the whole system of loops in this flare which has been the topic of several other studies.  相似文献   

8.
The H observations of a limb flare, which were associated with exceptional gamma-ray and hard X-ray emission, are presented and discussed. The good spatial and temporal resolution of the H data allow us to investigate the detailed structure of the elevated flare loops and the intensity variations of the loops, footpoints and surrounding chromosphere during each phase of the flare event. A delay time of 12 s was found between at least one of the hard X-ray (28–485 keV) peaks and corresponding H intensity maximum at a loop footpoint. A comparison is made between this event and another well-observed limb flare with many similar characteristics to seek evidence for the large difference in their levels of energy release.  相似文献   

9.
Tindo  I. P.  Ivanov  V. D.  Valníček  B.  Livshits  M. A. 《Solar physics》1972,27(2):426-435
Analysis of the X-ray polarization data at 0.8 Å for three major chromospheric flares shows that during the hard phase of the flare the X-rays are polarized in the plane, the projection of which on the solar disc is going approximately from the flare region to the center of the disc. Simultaneously performed measurements of the spectral energy distribution have proved that observed X-rays are produced by the bremsstrahlung of the accelerated electrons with the energies in the range 10–100 keV. The experimental data are in good agreement with the flare model, which deals with the radial movement of accelerated electrons towards the photosphere, together with the continuous injection of these electrons into the emitting region.Presented to International Meeting on Solar Activity, IZMIRAN, November 15–22, 1971.  相似文献   

10.
An extensive analysis is made of the theory of flare stars based on the fast electron hypothesis, in the light of the latest observational evidence. It is shown that an adequate agreement of theory with the observations obtains regarding the internal regular features in the flare amplitude data inUBV rays, as well as the changes of the colour characteristics of stars during the flares; in the latter case the analysis is made not only in respect of the UV Cet-type stars, but flare stars as well, forming a part of the Orion association. Problems bearing on the negative flare and the screening effect are dealt with. New properties of the light curves of flares are revealed, based on the above theory.Particular emphasis is laid on the X-ray radiation from flare stars. It is shown that the observed spectrum of X-ray radiation of flare stars differs sharply from that of X-ray radiation both of the stellar corona and solar X-ray flares. At the same time, the observed X-ray spectrum of flares is in complete harmony with the previously calculated theoretical spectrum corresponding to nonthermal bremsstrahlung with the energy of monoenergetic fast electrons 1.5 MeV. The durations of X-ray flares should be essentially shorter than that of the optical flares. The very high momentary intensities of the X-ray brightness with the exceedingly small duration at the curve maximum is predicted. It is shown that the gamma-ray bursts recorded so far have no relation whatever to flare stars.  相似文献   

11.
A study of the properties of the cosmic radiation of energy - 10 MeV generated by solar flares is reported. Data from four Pioneer spacecraft in interplanetary orbits, and separated by 180° in heliocentric longitude are employed. Attention is restricted to the properties evident at times in excess of 1 day after the occurrence of the parent flare. The anisotropic character of the radiation; the gradients in heliocentric longitude; the decay time constants; and the energy spectra of the radiation are all studied in detail.It is found that the equilibrium anisotropy assumes a direction - 45° E of the satellite-Sun line at very late times. It is suggested that the anisotropy at such times is parallel to E × B. This observation confirms that convection is the determining process in the escape of the solar cosmic rays from the solar system. It indicates that a positive radial gradient of solar cosmic radiation density has builtup at orbit of Earth some 4 days after a flare. This results in an effective convective velocity of approximately 1/2 the solar wind velocity. Direct measurements indicate the presence of strong gradients in heliocentric longitude even at very late times ( 4 days). These gradients are essentially invariant with respect to time, e-folding angles of n - 30° have been observed at - 10 MeV. The presence of these gradients has a major effect on the temporal variation of the cosmic ray flux during the decay phase of the flare effect. Thus, the observed decay time constant is either increased or decreased relative to the convective value depending on the position of the observer relative to the centroid of the cosmic ray population injected by the flare. The effect of the gradient becomes more pronounced at lower energies, and may even exceed the convective removal rate. The observed decay time constant, the characteristics of the anisotropy, and the gradient in longitude are shown to be inter-related as demanded by theory. It is shown that the exponent of the cosmic ray spectrum is dependent on the location of the observer relative to the centroid of the cosmic ray population injected by the parent flare. At a given point in the frame of reference of the cosmic ray population, the spectral exponent is invariant with time.Now at CSIRO, G.P.O. Box 124, Port Melbourne, Victoria 3207, Australia.On leave from Physical Research Laboratory, Ahmedabad, India.  相似文献   

12.
For almost 30 hr after the major (gamma-ray) two-ribbon flare on 6 November 1980, 03:30 UT, the Hard X-Ray Imaging Spectrometer (HXIS) aboard the SMM satellite imaged in > 3.5 keV X-rays a gigantic arch extending above the active region over the limb. Like a similar configuration on 22 May 1980, this arch formed the lowest part of a stationary post-flare radio noise storm recorded at metric wavelengths at Nançay and Culgoora. 6.5 hr after the flare a coronal region below the arch started quasi-periodic pulsations in X-ray brightness, observed by several SMM instruments. These brightness variations had no response in the chromosphere (H), very little in the transition layer (O v), but they clearly correlated with similar variations in brightness at 169 MHz. There were 13 pulses of this kind, with apparent periodicity of about 20 min, until another flare occurred in the active region at 15:00 UT. All the brightenings appeared within a localized area of about 30000 km2 in the northern part of the active region, but they definitely did not occur all at the same place.The top of the X-ray arch, at an altitude of 155 000 km, was continuously and smoothly decaying, taking no part in the striking variations below it. Therefore, the area variable in brightness does not seem to be the footpoint of the arch, as we supposed for similar variations on 22 May. More likely, it is a separate region connected directly with the source of the radio storm; particles accelerated in the storm may be dumped into the low corona and cause the X-ray enhancements. The X-ray arch was enhanced by two orders of magnitude in 3.5–5.5 keV X-ray counts and the temperature increased from 7.3 × 106 to 9 × 106 K when the new two-ribbon flare occurred at 15:00 UT. Thus, it is possible that energy is brought into the arch via the upper parts of the reconnecting flare loops - a process that can continue for hours.  相似文献   

13.
Photographic observations of the time development of the profile of the L line of hydrogen during flares were obtained with the NRL spectrograph on ATM. The profiles for the 15 June, 1973 and 21 January, 1974 flares reported here cover both core and wings of the line. The time sequences begin before flare maximum, and continue well into the decay phase. Careful attention has been given to photometry and absolute calibration. In the case of the 15 June, 1973 flare, data are presented both first-order corrected and uncorrected for incomplete filling of the spectrograph slit by flaring material. Correction of the 21 January, 1974 flare was not possible. We discuss core symmetry and shift, and show that our observations imply integrated flare L/H intensity ratios within a factor of two of unity for these two flares.  相似文献   

14.
Spectra of a 2B flare on 3 February, 1983 were observed simultaneously at H, H, and Can H, K lines with a multichannel spectrograph in the solar tower telescope of Nanjing University. The flare occurred in an extended region of penumbra at S 17 W07 from 05 : 41 to 07 : 00 UT. By use of an iterative method to solve the equations describing hydrostatic, radiative, and statistical equilibrium for hydrogen and ionized calcium atoms, five semi-empirical models corresponding to different times of the chromospheric flare have been computed. The results show that after the beginning of the flare, the heating of the chromosphere starts and the transition layer begins to be displaced downwards. However, during the impulsive phase the flare chromospheric region has a rapid outward expansion followed by a quick downward contraction. At the same time the transition layer starts to ascend and then descend again. After the H intensity maximum, the flare chromospheric region continues to condense and attains its most dense phase more than ten minutes after the maximum. Finally, the flare chromospheric region returns slowly to the normal chromospheric situation.  相似文献   

15.
Using photospheric and H observations and total radio flux data we study a two-ribbon flare in AR NOAA 4263 which was a part of a flare event complex on July 31, 1983. We find some facts which illuminate the special way of flare triggering in the analysed event. Around a double spot the photospheric vector magnetic field is discussed with respect to the chromospheric activities. In one of the spots the feet of long stretched loops are pushed down under steepening loops rooted in the same spot. This causes energy build-up by twist and shear in the stretched loops. One foot of the two-ribbon flare (triggered in the stretched and underpushed loop system) roots in a part of the spot umbra and penumbra where the field runs in extremely flat like a pressed spiral spring. A strange radio event, starting before the flares, can be interpreted as a precursor activity of the flare event complex. The radio data support the view that the analyzed flare process and the given magnetic field structure, respectively, are not very effective in energetic particle generation and escape.  相似文献   

16.
We present high resolution detailed observations of the class 3N two-ribbon flare of 1973, July 29 (McMath 12461), which was associated with the disappearance of a large filament (disparition brusque). This flare occurred in a diffuse bipolar magnetic region completely devoid of sunspots, and was further associated with a type IV radio burst and a soft X-ray event. Extensive H filtergraph, spectrograph and magnetograph records during the main phase of the flare suggest that downfalling and streaming material is present on both ribbons for several hours during the H emission enhancement, but only at a small number of points located both on and off the ribbons. We find a poor spatial correspondence between bright emission knots in the H ribbons and the positions of the observed downward motion. We conclude that the model of infall-impact of Hyder (1967a, b) is not consistent with our filtergraph and spectrograph observations.Presently at the University of Michigan, Ann Arbor, Michigan.  相似文献   

17.
Faintly visible, darkened regions in H lying outside but adjacentto bright flare emissionwere found to occur in 10 of 31 major flares investigated. Without exception, the darkenings occur over magnetically neutral areas, and these are usually bordered by ridges ofoppositely-poled field, where one border is shared in common with a flare ribbon. Thedarkenings probably result from the formation of faint, outlying loop systems, similar topost-flare loops seen in absorption, but which are connected to magnetic features outsidethe flare and are unresolved or only marginally resolved in patrol images. Simple modelsfor post-flare loops incorporating the results of statistical equilibrium calculations readilydemonstrate that darkenings of several percent (consistent with our photometric measurements) can be produced by loop structures of cross-sectional diameter 102 km (unresolved by patrol instruments) and containing gas at densities 5 × 1010–5 × 1011 cm-3 andtemperatures 8000–15000 K. Outlying loop systems might be formed by magnetic fieldreconnection, analogous to the mechanism ascribed to eruptive two-ribbon flares, butassociated with field structures adjacent to the flare. Alternatively, these outlying loopsystems may not erupt but become visible as a result of heating and chromospheric evaporation at the footpoints shared with the flare ribbon. In either case, the observations presented here have interesting implications for both the spatial scale and the topology of thecoronal magnetic fields in which eruptions occur.  相似文献   

18.
Craig  I.J.D. 《Solar physics》2001,202(1):109-115
A physically based explanation is given for the distribution of flare energies N(E)E where 1.5. In contrast to previous approaches, the present treatment is based on a physical theory of the flare reconnection site. The central assumption is that topological flare energy, although released explosively, is slowly accumulated over several hundred Alfvén timescales. When coupled to the geometric properties of the reconnective flare source, this assumption is shown to lead naturally to a deduction of the flare energy distribution. Current sheet models yield the exponent whereas more compact current structures imply steeper spectra .  相似文献   

19.
We study the spatial and temporal characteristics of the 3.5 to 30.0 keV emission in a solar flare on April 10, 1980. The data were obtained by the Hard X-ray Imaging Spectrometer aboard the Solar Maximum Mission Satellite. It is complemented in our analysis with data from other instruments on the same spacecraft, in particular that of the Hard X-ray Burst Spectrometer.Key results of our investigation are: (a) Continuous energy release is needed to substain the increase of the emission through the rising phase of the flare, before and after the impulsive phase in hard X-rays. The energy release is characterized by the production of hot (5 × 107 T 1.5 × 108 K) thermal regions within the flare loop structures. (b) The observational parameters characterizing the impulsive burst show that it is most likely associated with non-thermal processes (particle acceleration). (c) The continuous energy release is associated with strong chromospheric evaporation, as evidenced in the spectral line behavior determined from the Bent Crystal Spectrometer data. Both processes seem to stop just before flare maximum, and the subsequent evolution is most likely governed by the radiative cooling of the flare plasma.  相似文献   

20.
You  Jianqi  Li  Hui  Fan  Zhongyu  Sakurai  Takashi 《Solar physics》2001,203(1):107-117
The 3N/X3.3 flare of 28 November 1998 was observed in multiple wavelength simultaneously. The available data include H images, spectra in Hei 1083 nm and Caii 854.2 nm from Purple Mountain Observatory (PMO), soft X-ray (SXR) and hard X-ray (HXR) images and flux from Yohkoh. Morphological relationship investigation and spectral analysis of these data show: (1) The sudden brightening at loop top above the active region and the steep increase of SXR flux before flare onset suggest that the corona there had already been heated to some extent in the preflare phase. (2) The scales of the Caii 854.2 nm emission areas are very similar to those of the H line, but the emission profiles look like those of the Caii K line. Most of the Hei 1083 nm emissions exist in the bright H kernels and can last to the decay phase. (3) Flare spectra show that line shift and asymmetry are very common in this flare not only in the impulsive phase but also in the decay phase. The difference in the line shifts or asymmetry between Caii 854.2 nm and Hei 1083 nm, as well as the difference between the line center and wings of Caii 854.2 nm imply the existence of a velocity gradient in the line-of-sight direction. (4) Post-flare loops with very deep absorption (70%) and very-high-velocity red shifts (30–90 km s–1) were observed in Hei 1083 nm during the decay phase. However, only a slight dip can be found in the Caii 854.2 nm profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号