首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
We quantitatively re-examine the nonlinear viscous damping of surface Alfvén waves in polar coronal holes, using recently reported observational data on electron density and temperature and the magnetic field spreading near the edges. It is found that in the nonlinear regime the viscous damping of surface Alfvén waves becomes a viable mechanism of solar coronal plasma heating when strong spreading of magnetic field is taken into account. Our estimations confirm that coronal heating is more pronounced in the nonlinear case than in the linear one in presence of magnetic field spreading.  相似文献   

2.
Poedts  S.  Tóth  G.  Beliën  A.J.C.  Goedbloed  J.P. 《Solar physics》1997,172(1-2):45-52
The phase mixing and resonant dissipation of Alfvén waves is studied in both the 'closed' magnetic loops and the 'open' coronal holes observed in the hot solar corona. The resulting energy transfer from large to small length scales contributes to the heating of these magnetic structures. The nonlinear simulations show that the periodically varying shear flows that occur in the resonant layers are unstable. In coronal holes, the phase mixing of running Alfvén waves is speeded up by the 'flaring out' of the magnetic field lines in the lower chromosphere.  相似文献   

3.
Erdélyi  Róbert 《Solar physics》1998,180(1-2):213-229
The effect of equilibrium flow on linear Alfvén resonances in coronal loops is studied in the compressible viscous MHD model. By means of a finite element code, the full set of linearised driven MHD equations are solved for a one-dimensional equilibrium model in which the equilibrium quantities depend only on the radial coordinate. Computations of resonant absorption of Alfvén waves for two classes of coronal loop models show that the efficiency of the process of resonant absorption strongly depends on both the equilibrium parameters and the characteristics of the resonant wave. We find that a steady equilibrium shear flow can also significantly influence the resonant absorption of Alfvén waves in coronal magnetic flux tubes. The presence of an equilibrium flow may therefore be important for resonant Alfvén waves and coronal heating. A parametric analysis also shows that the resonant absorption can be strongly enhanced by the equilibrium flow, even up to total dissipation of the incoming wave.  相似文献   

4.
The resonant absorption of small amplitude surface Alfvén waves is studied in nonlinear incompressible MHD for a viscous and resistive plasma. The reductive perturbation method is used to obtain the equation that governs the spatial and temporal behaviour of small amplitude nonlinear surface Alfvén waves. Numerical solutions to this equation are obtained under the initial condition that att = 0 the spatial variation is purely sinusoidal. The numerical results show that nonlinearity accelerates the wave damping due to resonant absorption. Resonant absorption is a more efficient wave damping mechanism than can be anticipated on the basis of linear theory.  相似文献   

5.
We have modeled the solar coronal active loop heating by discrete Alfvén waves. Discrete Alfvén waves (DAW) are a new class of Alfvén waves which can be described by the two-fluid model with finite ion-cyclotron frequency, or the MHD model with plasma current along the magnetic field line as shown by Appert, Vaclavik, and Villar (1984). We have modeled the coronal loop as a semi-toroidal plasma with the major toroidal radius much larger than the plasma radius. We have shown that the absorption of discrete Alfvén waves by the plasma through viscosity can account for at least 30% of the coronal heating rate density of 10–4 J m–3 s–1.  相似文献   

6.
A possible mechanism for the formation and heating of coronal loops through the propagation and damping of fast mode waves is proposed and studied in detail. Loop-like field structures are represented by a dipole field with the point dipole at a given distance below the solar surface. The density of the medium is determined by hydrostatic equilibrium along the field lines in an isothermal atmosphere. The fast mode waves propagating outward from the coronal base are refracted into regions with a low Alfvén speed and suffer collisionless damping when the gas pressure becomes comparable to the magnetic pressure. The propagation and damping of these waves are studied for three different cases: a uniform density at the coronal base, a density depletion within a given flux tube, and a density enhancement within a given flux tube. The fast mode waves are found to be important in the formation and heating of the loops if the wave energy flux density is of the order 105 ergs cm-2 s-1 at the coronal base.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

7.
Nakariakov  V. M.  Roberts  B.  Murawski  K. 《Solar physics》1997,175(1):93-105
The nonlinear excitation of fast magnetosonic waves by phase mixing Alfvén waves in a cold plasma with a smooth inhomogeneity of density across a uniform magnetic field is considered. If initially fast waves are absent from the system, then nonlinearity leads to their excitation by transversal gradients in the Alfvén wave. The efficiency of the nonlinear Alfvén–fast magnetosonic wave coupling is strongly increased by the inhomogeneity of the medium. The fast waves, permanently generated by Alfvén wave phase mixing, are refracted from the region with transversal gradients of the Alfvén speed. This nonlinear process suggests a mechanism of indirect plasma heating by phase mixing through the excitation of obliquely propagating fast waves.  相似文献   

8.
K. Murawski 《Solar physics》1992,139(2):279-297
The nonlinear propagation of the Alfvén and magnetosonic waves in the solar corona is investigated in terms of model equations. Due to viscous effects taken into account the propagation of the fast wave itself is governed by Burgers type equations possessing both expansion and compression shock solutions. Numerical simulations show that both parallely and perpendicularly propagating fast waves can steepen into shocks if their amplitudes are in excess of some sizeable fraction of the Alfvén velocity. However, if the magnetic field changes linearly in the perpendicular direction, then formation of perpendicular shocks can be hindered. The Alfvén waves exhibit a tendency to drive both the slow and fast magnetosonic waves whose propagation is described by linearized Boussinesq type equations with ponderomotive terms due to the Alfvén wave. The limits of the slow and fast waves are investigated.  相似文献   

9.
The propagation and interference of Alfvén waves in magnetic regions is studied. A multilayer approximation of the standard models of the solar atmosphere is used. In each layer, there is a linear law of temperature variation and a power law of Alfvén velocity variation. The analytical solutions of a wave equation are stitched at the layer boundaries. The low-frequency Alfvén waves (P > 1 s) are able to transfer the energy from sunspots into the corona by tunneling only. The chromosphere is not a resonance filter for the Alfvén waves. The interference and resonance of Alfvén waves are found to be important to wave propagation through the magnetic coronal arches. The transmission coefficient of Alfvén waves into the corona increases sharply on the resonance frequences. To take into account the wave absorption in the corona, a method of equivalent schemes is developed. The heating of a coronal arch by Alfvén waves is discussed.  相似文献   

10.
I extend a previous paper which argued that Alfvén waves traveling up a large coronal loop may heat this loop at the top and increase its visibility. This heating is now evaluated more completely, taking into account the changes along the loop in field strength, gas density and flux of waves. The location and efficiency of the heating depend very non-linearly on the intensity of the waves, which allows rapid changes in the visibility of a loop. Observational and theoretical conditions for the applicability of the theory are summarized. Alfvén waves preferentially heat the upper portions of coronal helmets, but a measurable excess temperature on a loop requires somewhat implausibly high wave fluxes. Radiation losses from low-lying loops with strong magnetic fields cannot be explained without modifying the theory.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号