首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Weak dust acoustic (DA) solitary waves are investigated in a mixed nonthermal high energy-tail electron distribution, focusing on the influence of an interplay between nonthermality and superthermality on the DA soliton energy. It is shown that in a pure superthermal plasma (α=0), electron thermalization (κ→∞) leads to an increase of the energy carried by the soliton. Addition of minute quantities of nonthermal electrons drastically modifies the κ-dependence of the soliton energy E κ,α . The latter first decreases, then exhibits a local minimum before leveling at a constant value. The energy exchange between the non-Maxwellian electrons and the localized solitary structure depends drastically on the interplay between superthermality and nonthermality.  相似文献   

2.
Propagation of ion acoustic solitary waves are studied in e-p-i plasmas containing high relativistic ions, Maxwell–Boltzmann distributed positrons and nonthermal electrons. Reductive perturbation method is used and the Korteweg-de Vries (KdV) equation is derived. The effects of high relativistic ions and nonthermal electrons on soliton characters are studied.  相似文献   

3.
The propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two-temperature ions, and nonthermal electrons is studied. By using the reductive perturbation theory, the Kadomtsev–Petviashivili (KP) equation is derived. The energy of the soliton has been calculated. By using standard normal modes analysis a linear dispersion relation has been obtained. The effects of variable dust charge on the energy of the soliton and the angular frequency of the linear wave are also discussed. It is shown that the amplitude of solitary waves of the KP equation diverges at the critical values of plasma parameters. We derive solitons of a modified KP equation with finite amplitude in this situation.  相似文献   

4.
Dust acoustic (DA) solitary wave existence conditions are investigated for positively charged dust particles in the presence of nonthermal electrons. Once Sagdeev pseudo-potential derived through fluid equations, for large amplitude DA waves, the lower limit on Mach number is calculated analytically using the necessary condition for the solitary waves existence. The double layers conditions provides the upper limit on Mach number. This allowed us to numerically investigate the effect of the temperature, density and nonthermal parameters on the solitary waves’ characteristics. The present study is devoted to a complex plasma subject to ultraviolet radiations such as the one in the lower earth’s ionosphere.  相似文献   

5.
Properties of dust-ion acoustic solitary waves (DIASWs) in dusty plasmas composed of nonextensive electrons, cold fluid ions and stationary dust particles are investigated. The possibility of soliton formation and the effect of nonextensivity of the electron distribution on the soliton characters are studied using the pseudo-potential method. Regions of parameters in which a solitary wave can be propagated in the plasma is analyzed too. It is found that the solitary excitations strongly depend on the electron-ion density ratio (μ), Mach numbers (M) as well as the nonextensive parameter (q). It is shown that the domain of allowed Mach numbers depends drastically on the plasma parameters and especially on the electron nonextensivity. It is found that beyond a threshold value of the nonextensive parameter (q), dust-ion acoustic solitons are admitted.  相似文献   

6.
Properties of fully nonlinear ion-acoustic solitary waves in an unmagnetized and collisionless pair-ion (PI) plasma containing superthermal electrons obeying Cairns distribution have been analyzed. A linear biquadratic dispersion relation has been derived, which yields the fast (supersonic) and slow (subsonic) modes in a pair-ion-electron plasma with nonthermal electrons. For nonlinear analysis, Korteweg-de Vries equation is obtained using the reductive perturbation technique. It is found that in case of slow mode, both electrostatic hump and dip type structures are formed depending on the temperature difference between positively and negatively charged ions, whereas, only dip type solitary structures have been observed for fast mode. The present work may be employed to explore and to understand the formation of solitary structures in the space (especially, the Earth’s ionosphere where two distinct pair ion species (H ±) are present) and laboratory produced pair-ion plasmas with nonthermal electrons.  相似文献   

7.
Nonlinear electron-acoustic solitary waves (EASWs) are studied using Sagdeev’s pseudo-potential technique in a collisionless unmagnetized plasma consisting of a cold electron fluid, nonthermal hot electrons and stationary ions. It is shown that the presence of fast nonthermal electrons may modify the parametric region where electron-acoustic solitons may exist. Our investigation is of wide relevance to astronomers and space scientists working on interstellar space plasmas.  相似文献   

8.
Properties of fully nonlinear electron-acoustic solitary waves in an unmagnetized and collisionless electron-positron-ion plasma containing cold dynamical electrons, superthermal electrons and positrons obeying Cairns’ distribution have been analyzed in the stationary background of massive positive ions. A linear dispersion relation has been derived, from which it is found that even in the absence of superthermal electrons, the superthermal positron component can provide the restoring force to the cold inertial electrons to excite electron-acoustic waves. Moreover, superthermal electron and positron populations seem to enhance the electron acoustic wave phase speed. For nonlinear analysis, Korteweg-de Vries equation is obtained using the reductive perturbation technique. It is found that in the presence of positron both hump and dip type solitons appear to excite. The present work may be employed to explore and to understand the formation of electron acoustic soliton structures in the space and laboratory plasmas with nonthermal electrons and positrons.  相似文献   

9.
The problem of solitary electron acoustic (EA) wave propagation in a plasma with nonthermal hot electrons featuring the Tsallis distribution is addressed. A physically meaningful nonextensive nonthermal velocity distribution is outlined. It is shown that the effect of the nonthermal electron nonextensivity on EA waves can be quite important. Interestingly, we found that the phase speed of the linear EA mode increases as the entropic index q decreases. This enhancement is weak for q>1, and significant for q<1. For a given nonthermal state, the minimum value of the allowable Mach numbers is lowered as the nonextensive nature of the electrons becomes important. This critical limit is shifted towards higher values as the nonthermal character of the plasma is increased. Moreover, our plasma model supports rarefactive EA solitary waves the main quantities of which depend sensitively on q. This dependency (for q>1) becomes less noticeable as the nonthermal parameter decreases. Nevertheless, decreasing α yields for q<0 a different result, a trend which may be attributed to the functional form of the nonthermal nonextensive distribution. Our study (which is not aimed at putting the ad hoc Cairns distribution onto a more rigorous foundation) suggests that a background electron nonextensivity may influence the EA solitons.  相似文献   

10.
A theoretical investigation is carried out for understanding the properties of electron-acoustic potential structures (i.e., solitary waves and double-layers) in a magnetized plasma whose constituents are a cold magnetized electron fluid, hot electrons obeying a nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation; modified Zakharov–Kuznetsov (MZK) equation, in the small amplitude regime. The MZK equation is analyzed to examine the existence regions of the solitary pulses and double-layers. It is found that rarefactive electron-acoustic solitary waves and double-layers strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter.  相似文献   

11.
In this paper, the characteristics of the dust acoustic solitary waves in dusty plasmas are studied. The distribution of ions is nonthermal, and the nonthermal parameter is treated as a variable. The pseudo-potential method has been used to investigate the possibility of soliton formation. We show that for some values of the nonthermal parameter there is no soliton.  相似文献   

12.
Oblique propagation and head-on collisions of solitary structures is studied in a dense magnetized plasma comprised of relativistic ultra-cold electrons and positrons and positive dynamic ions using conventional extended multi-scales technique, in the ground of quantum hydrodynamics model. The variations of head-on collision phase-shift as well as the characteristic soliton amplitude and width is evaluated numerically in terms of other plasma parameters such as mass-density, normalized magnetic field strength, its angle with respect to the soliton propagation and the relative positron number-density. The relevance of current investigations, with appropriate plasma parameters for the astrophysical dense magnetized objects such as white-dwarfs, is addressed.  相似文献   

13.
In this paper, the ion-acoustic solitons in a weakly relativistic electron-positron-ion plasma have been investigated. Relativistic ions, Maxwell-Boltzmann distributed positrons and nonthermal electrons are considered in collisionless warm plasma. Using a reductive perturbation theory, a Korteweg-de Vries (KdV) equation is derived, and the relativistic effect on the solitons is studied. It is found that the amplitude of solitary waves of the KdV equation diverges at the critical values of plasma parameters. Finally, in this situation, the solitons of a modified KdV (mKdV) equation with finite amplitude is derived.  相似文献   

14.
The combined effects of the obliqueness and nonextensive electrons are incorporated in the study of ion acoustic (IA) waves in a magnetized plasma. The propagation properties of two possible modes (in the linear regime) are investigated. It is found that the electron nonextensivity decreases the phase velocities of both two modes. Also obliqueness leads to increase of separation between two modes. The nonlinear evolution of IA solitary waves is governed by an energy-like equation. The influence of electron nonextensivity, obliqueness and electron population on the existence domain of solitary waves and the soliton characteristics are examined. It is shown that the existence domain of the IA soliton and its profile is significantly depended on the deviation of electrons from thermodynamic equilibrium and obliqueness. Interestingly, the present model supports compressive as well as rarefactive IA solitary waves. Our finding should elucidate the nonlinear electrostatic structures that propagate in astrophysical and cosmological plasma scenarios where nonextensive and magnetized plasma can exist; like instellar plasma stellar polytropes, solar neutrino problem, peculiar velocities of galaxy clusters, dark-matter halos, protoneutron stars, hadronic matter, quark-gluon plasma, and magnetosphere, etc.  相似文献   

15.
The properties of cylindrical and spherical ion acoustic solitary waves (IASWs) are investigated in a three-component unmagnetized, collisionless plasma consisting of warm ion fluid and superthermally distributed electrons and positrons in a nonplanar cylindrical or spherical geometry. Using the reductive perturbation technique, the nonplanar cylindrical and spherical Korteweg-de Vries (KdV) equations are derived. The effects of spectral index of electron and positron, and other plasma parameters are studied. It is found that both negative as well as positive solitary potential structures are formed in nonplanar geometries. The numerical solution shows that amplitude of the soliton is large in spherical geometry in comparison with cylindrical geometry. Numerical results indicate that the amplitude of the soliton is large in spherical geometry in comparison with cylindrical geometry.  相似文献   

16.
A rigorous theoretical investigation has been made on multi-dimensional instability of obliquely propagating electrostatic dust-ion-acoustic (DIA) solitary structures in a magnetized dusty electronegative plasma which consists of Boltzmann electrons, nonthermal negative ions, cold mobile positive ions, and arbitrarily charged stationary dust. The Zakharov-Kuznetsov (ZK) equation is derived by the reductive perturbation method, and its solitary wave solution is analyzed for the study of the DIA solitary structures, which are found to exist in such a dusty plasma. The multi-dimensional instability of these solitary structures is also studied by the small-k (long wave-length plane wave) perturbation expansion technique. The combined effects of the external magnetic field, obliqueness, and nonthermal distribution of negative ions, which are found to significantly modify the basic properties of small but finite-amplitude DIA solitary waves, are examined. The external magnetic field and the propagation directions of both the nonlinear waves and their perturbation modes are found to play a very important role in changing the instability criterion and the growth rate of the unstable DIA solitary waves. The basic features (viz. speed, amplitude, width, instability, etc.) and the underlying physics of the DIA solitary waves, which are relevant to many astrophysical situations (especially, auroral plasma, Saturn’s E-ring and F-ring, Halley’s comet, etc.) and laboratory dusty plasma situations, are briefly discussed.  相似文献   

17.
Nonlinear ion acoustic solitary waves (IASWs) are addressed in a weakly relativistic plasma consisting of cold ion fluid, q-nonextensive electron velocity distribution and Boltzmann distributed positron. The Korteweg-de Vries- (KdV) equation is derived by reductive perturbation method. We investigate the effect of nonextensive electrons on solitary waves in this medium. It is found that only compressive solitons can be appeared in the existence of nonextensive electrons. It is shown that the structure of soliton depend sensitively on the q-nonextensive parameter.  相似文献   

18.
This work demonstrates the possibility of magnetic-field topology investigations using microwave polarimetric observations. We study a solar flare of GOES M1.7 class that occurred on 11 February, 2014. This flare revealed a clear signature of spatial inversion of the radio-emission polarization sign. We show that the observed polarization pattern can be explained by nonthermal gyrosynchrotron emission from the twisted magnetic structure. Using observations of the Reuven Ramaty High Energy Solar Spectroscopic Imager, Nobeyama Radio Observatory, Radio Solar Telescope Network, and Solar Dynamics Observatory, we have determined the parameters of nonthermal electrons and thermal plasma and identified the magnetic structure where the flare energy release occurred. To reconstruct the coronal magnetic field, we use nonlinear force-free field (NLFFF) and potential magnetic-field approaches. Radio emission of nonthermal electrons is simulated by the GX Simulator code using the extrapolated magnetic field and the parameters of nonthermal electrons and thermal plasma inferred from the observations; the model radio maps and spectra are compared with observations. We have found that the potential-magnetic-field approach fails to explain the observed circular polarization pattern; on the other hand, the Stokes-\(V\) map is successfully explained by assuming nonthermal electrons to be distributed along the twisted magnetic structure determined by the NLFFF extrapolation approach. Thus, we show that the radio-polarization maps can be used for diagnosing the topology of the flare magnetic structures where nonthermal electrons are injected.  相似文献   

19.
Korteweg-de Vries (KdV) equation for electrostatic wave in an unmagnetized negative ion plasma with superthermal electrons is derived using reductive perturbation technique. A generalized Lorentzian distribution (kappa distribution) is assumed for the electrons. The influence of spectral index (kappa) on the soliton is discussed in the presence of the negative ions. It is found that different plasma parameters such as (negative ion temperature, positive ion temperature, negative ion concentration, mass ratio of positive to negative ion) in the presence of superthermal electrons modify the ion acoustic solitary wave structure significantly.  相似文献   

20.
The effect of nonthermal electrons on ion-temperature-gradient (ITG) driven modes is investigated in the presence of variable dust charge and ion shear flow. The dust charge fluctuating expression is obtained in the presence of kappa distributed electrons. A dispersion relation is derived and analyzed numerically by choosing space plasma parameters of Jupiter/Saturn magnetospheres. It is found that the presence of nonthermal electrons population reduces the growth rate of ITG mode driven instability. The effects of ion temperature, electron density and magnetic field variation on the growth rate of ITG instability are presented numerically. It is also pointed out that the present results will be useful to understand the ITG driven modes with variable dust charge and kappa distributed electrons, present in most of the space plasma environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号