首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We investigate redshift distributions of three long burst samples, with the first sample containing 131 long bursts with observed redshifts, the second including 220 long bursts with pseudo-redshifts calculated by the variability-luminosity relation, and the third including 1194 long bursts with pseudo-redshifts calculated by the lag-luminosity relation, respectively. In the redshift range 0-1 the Kolmogorov-Smirnov probability of the observed redshift distribution and that of the variability-luminosity relation is large. In the redshift ranges 1-2, 2-3, 3-6.3 and 0-37, the Kolmogorov-Smimov probabilities of the redshift distribution from lag-luminosity relation and the observed redshift distri-bution are also large. For the GRBs, which appear both in the two pseudo-redshift burst samples, the KS probability of the pseudo-redshift distribution from the lag-luminosity relation and the observed reshifi distribution is 0.447, which is very large. Based on these results, some conclusions are drawn: I) the V-Liso relation might be more believable than the τ-Liso relation in low redshift ranges and the τ-Liso relation might be more real than the V-Liso relation in high redshift ranges; ii) if we do not consider the redshift ranges, the τ-Liso relation might be more physical and intrinsical than the V-Liso relation.  相似文献   

3.
4.
The correlation between distant Gamma-Ray Bursts (GRBs) and foreground galaxy clusters is re-examined by using the well localized (with an accuracy down to a few arcsec) Swift/XRT GRBs.The galaxy clusters are compiled from both the X-ray selected ROSAT brightest cluster sample (BCS) and the BCS extension by requiring δ≧ 0° and b ≧ 20°.The Swift/XRT GRBs fulfilling the above selection criteria are cross-correlated with the clusters.Both Nearest-Neighbor analysis and the angular two-point cross-correlation function show that there is not enough evidence supporting the correlation between the GRBs and foreground clusters.We suggest that the non-correlation is probably related to the GRB number-flux relation slope.  相似文献   

5.
The gamma-ray burst (GRB) mission Swift has made a much deeper GRBsurvey than any previous one. I present a systematical comparison between GRB samples detected with pre-Swift missions and those from Swift, in order to investigate whether they show any statistical difference. Our Swift GRB sample includes the bursts detected by Swift/BAT before 2007 September. With both flux-limited surveys and redshift-known GRB samples, I show that, apparently, the observed distributions of the redshifts, T90, and log N-log P are significantly different, but not for the spectral hardness ratio, fluence and Eiso. The redshifts of the Swift GRB sample are statistically larger than those of pre-Swift GRBs, with a mean of 1.95±0.17 compared to ~ 1 for pre-Swift GRBs. The cosmological effect on the observables is thus considerable. This effect on the spectral hardness ratio, fluence and Eiso is cancelled out, and the distributions of these quantities indeed do not show significant differences between the Swift and pre-Swift GRBs. Taking this effect into account, I found that the corrected distributions of T90 for long GRBs and log N - log P observed with Swift/BAT are also consistent with those observed with CGRO/BATSE. These results indicate that the Swift and pre-Swift GRBs are from the same population.  相似文献   

6.
We compute the luminosity function (LF) and the formation rate of long gamma-ray bursts (GRBs) by fitting the observed differential peak flux distribution obtained by the Burst and Transient Source Experiment (BATSE) in two different scenarios: (i) the GRB luminosity evolves with redshift and (ii) GRBs form preferentially in low-metallicity environments. In both cases, model predictions are consistent with the Swift number counts and with the number of detections at   z > 2.5  and >3.5. To discriminate between the two evolutionary scenarios, we compare the model results with the number of luminous bursts (i.e. with isotropic peak luminosity in excess of 1053 erg s−1) detected by Swift in its first 3 yr of mission. Our sample conservatively contains only bursts with good redshift determination and measured peak energy. We find that pure luminosity evolution models can account for the number of sure identifications. In the case of a pure density evolution scenario, models with   Z th > 0.3 Z  are ruled out with high confidence. For lower metallicity thresholds, the model results are still statistically consistent with available lower limits. However, many factors can increase the discrepancy between model results and data, indicating that some luminosity evolution in the GRB LF may be needed also for such low values of Z th. Finally, using these new constraints, we derive robust upper limits on the bright end of the GRB LF, showing that this cannot be steeper than ∼2.6.  相似文献   

7.
We investigate, independently of specific emission models, the constraints on the value of the bulk Lorentz factor Γ of a fireball. We assume that the burst emission comes from internal shocks in a region transparent to Thomson scattering, and before deceleration caused by the swept-up external matter is effective. We consider the role of Compton drag in decelerating fast-moving shells before they interact with slower ones, thus limiting the possible differences in the bulk Lorentz factor of shells. Tighter constraints on the possible range of Γ are derived by requiring that the internal shocks transform more than a few per cent of the bulk energy into radiation. Efficient bursts may require a hierarchical scenario, where a shell undergoes multiple interactions with other shells. We conclude that fireballs with average Lorentz factors larger than 1000 are unlikely to give rise to the observed bursts.  相似文献   

8.
We calculate the very high-energy (sub-GeV to TeV) inverse Compton emission of GRB afterglows. We argue that this emission provides a powerful test of the currently accepted afterglow model. We focus on two processes: synchrotron self-Compton emission within the afterglow blast wave, and external inverse Compton emission which occurs when flare photons (produced by an internal process) pass through the blast wave. We show that if our current interpretations of the Swift X-ray telescope (XRT) data are correct, there should be a canonical high-energy afterglow emission light curve. Our predictions can be tested with high-energy observatories such as GLAST , Whipple, HESS and MAGIC. Under favourable conditions we expect afterglow detections in all these detectors.  相似文献   

9.
We analyse a sample of bright long bursts and find that the pulse durations have a lognormal distribution while the intervals between pulses have an excess of long intervals (relative to lognormal distribution). This excess can be explained by the existence of quiescent times , long periods with no signal above the background level. The lognormal distribution of the intervals (excluding the quiescent times ) is similar to the distribution of the pulse widths. This result suggests that the quiescent times are made by a different mechanism than the rest of the intervals. It also suggests that the intervals (excluding the quiescent times ) and the pulse width are connected to the same parameters of the source. We find that there is a correlation between a pulse width and the duration of the interval preceding it. There is a weaker, but still a significant, correlation between a pulse width and the interval following it. The significance of the correlation drops substantially when the intervals considered are not adjacent to the pulse.  相似文献   

10.
This paper establishes united classification of gamma-ray bursts and their counterparts on the basis of measured characteristics: photon energy E and emission duration T. We find that the interrelation between these characteristics is such that as the energy increases, the duration decreases (and vice versa). The given interrelation reflects the nature of the phenomenon and forms the ET diagram, which represents a natural classification of all observed events in the energy range from about 109 to 10−6 eV and in the corresponding interval of durations from about 10−2 up to 108 s. The proposed classification results from our findings, which are principal for the theory and practical study of the phenomenon.  相似文献   

11.
12.
13.
Assuming an intrinsic ‘Band’ shape spectrum and an intrinsic energy‐independent emission profile we have investigated the connection between the evolution of the rest‐frame spectral parameters and the spectral lags measured in gamma‐ray burst (GRB) pulses by using a pulse model. We first focus our attention on the evolution of the peak energy, E0,p, and neglect the effect of the curvature effect. It is found that the evolution of E0,p alone can produce the observed lags. When E0,p varies from hard to soft only the positive lags can be observed. The negative lags would occur in the case of E0,p varying from soft to hard. When the evolution of E0,p and the low‐energy spectral index α0 varying from soft to hard then to soft we can find the aforesaid two sorts of lags. We then examine the combined case of the spectral evolution and the curvature effect of fireball and find the observed spectral lags would increase. A sample including 15 single pulses whose spectral evolution follows hard to soft has been investigated. All the lags of these pulses are positive, which is in good agreement with our theoretical predictions. Our analysis shows that only the intrinsic spectral evolution can produce the spectral lags and the observed lags should be contributed by the intrinsic spectral evolution and the curvature effect. But it is still unclear what cause the spectral evolution (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The complex structure of the light curves of Swift Gamma-Ray Bursts (GRBs) has made the identification of breaks, and the interpretation of the blast wave caused by the burst, more difficult than in the pre- Swift era. We aim to identify breaks, which are possibly hidden, and to constrain the blast wave parameters; electron energy distribution, p , density profile of the circumburst medium, k , and the continued energy injection index, q . We do so by comparing the observed multiwavelength light curves and X-ray spectra of our sample to the predictions of the blast wave model. We can successfully interpret all of the bursts in our sample of 10, except two, within this framework and we can estimate, with confidence, the electron energy distribution index for 6 of the sample. Furthermore, we identify jet breaks in a number of the bursts. A statistical analysis of the distribution of p reveals that, even in the most conservative case of least scatter, the values are not consistent with a single, universal value. The values of k suggest that the circumburst density profiles are not drawn from only one of the constant density or wind-like media populations.  相似文献   

15.
16.
This work presents a possible luminosity estimator for long γ-ray bursts (GRBs) based on their light curves. We use the method of variability analysis in the time domain to calculate the power density spectrum (PDS) for each of the 12 GRBs with known redshifts observed by CGRO/BATSE. The peak of the power density spectrum P is a measure of the intensity of variability of the given light curve and a strong correlation is found between P and the isotropic peak luminosity L of the GRB. It is a successor to the lag-luminosity relation of Norris et al. (2000) and the variability-luminosity relation of Reichart et al. (2001).  相似文献   

17.
The gamma-ray burst (GRB) mission Swift has made a much deeper GRB survey than any previous one. I present a systematical comparison between GRB samples detected with pre-Swift missions and those from Swift, in order to investigate whether they show any statistical difference. Our Swift GRB sample includes the bursts detected by Swift/BAT before 2007 September. With both flux-limited surveys and redshift-known GRB samples, I show that, apparently, the observed distributions of the redshifts, T90, and log N- log P are significantly different, but not for the spectral hardness ratio, fluence and Eiso. The redshifts of the Swift GRB sample are statistically larger than those of pre-Swift GRBs, with a mean of 1.95±0.17 compared to ~ 1 for pre-Swift GRBs. The cosmological effect on the observables is thus considerable. This effect on the spectral hardness ratio, fluence and Eiso is cancelled out, and the distributions of these quantities indeed do not show significant differences between the Swift and pre-Sw/ft GRBs. Taking this effect into account, I found that the corrected distributions of T90 for long GRBs and log N - log P observed with Swift/BAT are also consistent with those observed with CGRO/BATSE. These results indicate that the Swift and pre-Swift GRBs are from the same population.  相似文献   

18.
19.
20.
A small air shower array operating over many years has been used to search for ultra-high energy (UHE) gamma radiation ( 50 TeV) associated with gamma-ray bursts (GRBs) detected by the BATSE instrument on the Compton Gamma-Ray Observatory (CGRO). Upper limits for a one minute interval after each burst are presented for seven GRBs located with zenith angles < 20°. A 4.3 excess over background was observed between 10 and 20 minutes following the onset of a GRB on 11 May 1991. The confidence level that this is due to a real effect and not a background fluctuation is 99.8%. If this effect is real then cosmological models are excluded for this burst because of absorption of UHE gamma rays by the intergalactic radiation fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号