首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We model the cosmological co-evolution of galaxies and their central supermassive black holes (BHs) within a semi-analytical framework developed on the outputs of the Millennium Simulation. This model, described in detail by Croton et al. and De Lucia and Blaizot, introduces a 'radio mode' feedback from active galactic nuclei (AGN) at the centre of X-ray emitting atmospheres in galaxy groups and clusters. Thanks to this mechanism, the model can simultaneously explain: (i) the low observed mass dropout rate in cooling flows; (ii) the exponential cut-off in the bright end of the galaxy luminosity function and (iii) the bulge-dominated morphologies and old stellar ages of the most massive galaxies in clusters. This paper is the first of a series in which we investigate how well this model can also reproduce the physical properties of BHs and AGN. Here we analyse the scaling relations, the fundamental plane and the mass function of BHs, and compare them with the most recent observational data. Moreover, we extend the semi-analytic model to follow the evolution of the BH mass accretion and its conversion into radiation, and compare the derived AGN bolometric luminosity function with the observed one. While we find for the most part a very good agreement between predicted and observed BH properties, the semi-analytic model underestimates the number density of luminous AGN at high redshifts, independently of the adopted Eddington factor and accretion efficiency. However, an agreement with the observations is possible within the framework of our model, provided it is assumed that the cold gas fraction accreted by BHs at high redshifts is larger than at low redshifts.  相似文献   

2.
3.
In this paper, we explore the gravitomagnetic interaction of a black hole (BH) with a misaligned accretion disc to study BH spin precession and alignment jointly with BH mass M BH and spin parameter a evolution, under the assumption that the disc is continually fed, in its outer region, by matter with angular momentum fixed on a given direction     . We develop an iterative scheme based on the adiabatic approximation to study the BH–disc co-evolution: in this approach, the accretion disc transits through a sequence of quasi-steady warped states (Bardeen–Petterson effect) and interacts with the BH until the spin   J BH  aligns with     . For a BH aligning with a corotating disc, the fractional increase in mass is typically less than a few per cent, while the spin modulus can increase up to a few tens of per cent. The alignment time-scale     is of  ∼105–106 yr  for a maximally rotating BH accreting at the Eddington rate. BH–disc alignment from an initially counter-rotating disc tends to be more efficient compared to the specular corotating case due to the asymmetry seeded in the Kerr metric: counter-rotating matter carries a larger and opposite angular momentum when crossing the innermost stable orbit, so that the spin modulus decreases faster and so the relative inclination angle.  相似文献   

4.
We use morphological information of X-ray selected active galactic nuclei (AGN) hosts to set limits on the fraction of the accretion density of the Universe at   z ≈ 1  that is not likely to be associated with major mergers. Deep X-ray observations are combined with high-resolution optical data from the Hubble Space Telescope in the All-wavelength Extended Groth strip International Survey, Great Observatories Origins Deep Survey (GOODS) North and GOODS South fields to explore the morphological breakdown of X-ray sources in the redshift interval  0.5 < z < 1.3  . The sample is split into discs, early-type bulge-dominated galaxies, peculiar systems and point sources in which the nuclear source outshines the host galaxy. The X-ray luminosity function and luminosity density of AGN at   z ≈ 1  are then calculated as a function of morphological type. We find that disc-dominated hosts contribute  30 ± 9  per cent to the total AGN space density and  23 ± 6  per cent to the luminosity density at   z ≈ 1  . We argue that AGN in disc galaxies are most likely fuelled not by major merger events but by minor interactions or internal instabilities. We find evidence that these mechanisms may be more efficient in producing luminous AGN     compared to predictions for the stochastic fuelling of massive black holes in disc galaxies.  相似文献   

5.
We present radio observations and optical spectroscopy of the giant low surface brightness (LSB) galaxy PGC 045080 (or 1300+0144). PGC 045080 is a moderately distant galaxy having a highly inclined optical disc and massive H  i gas content. Radio continuum observations of the galaxy were carried out at 320, 610 MHz and 1.4 GHz. Continuum emission was detected and mapped in the galaxy. The emission appears extended over the inner disc at all three frequencies. At 1.4 GHz and 610 MHz it appears to have two distinct lobes. We also did optical spectroscopy of the galaxy nucleus; the spectrum did not show any strong emission lines associated with active galactic nucleus (AGN) activity but the presence of a weak AGN cannot be ruled out. Furthermore, comparison of the Hα flux and radio continuum at 1.4 GHz suggests that a significant fraction of the emission is non-thermal in nature. Hence we conclude that a weak or hidden AGN may be present in PGC 045080. The extended radio emission represents lobes/jets from the AGN. These observations show that although LSB galaxies are metal poor and have very little star formation, their centres can host significant AGN activity. We also mapped the H  i gas disc and velocity field in PGC 045080. The H  i disc extends well beyond the optical disc and appears warped. In the H  i intensity maps, the disc appears distinctly lopsided. The velocity field is disturbed on the lopsided side of the disc but is fairly uniform in the other half. We derived the H  i rotation curve for the galaxy from the velocity field. The rotation curve has a flat rotation speed of ∼190 km s−1.  相似文献   

6.
We investigate whether models based on the assumption that jets in quasars are powered by rotating black holes can explain the observed radio dichotomy of quasars. We show that in terms of the 'spin paradigm' models, radio-loud quasars could be objects in which the rotation rate of the black hole corresponds to an equilibrium between spin-up by accretion and spin-down by the Blandford–Znajek mechanism. Radio-quiet quasars could be hosting black holes with an average spin much smaller than the equilibrium one. We discuss possible accretion scenarios which can lead to such a bimodal distribution of black hole spins.  相似文献   

7.
In this paper, we consider the process of alignment of a spinning black hole and a surrounding misaligned accretion disc. We use a simplified set of equations, that describe the evolution of the system in the case where the propagation of warping disturbances in the accretion disc occurs diffusively, a situation likely to be common in the thin discs in active galactic nuclei (AGN). We also allow the direction of the hole spin to move under the action of the disc torques. In such a way, the evolution of the hole–disc system is computed self-consistently. We consider a number of different situations and we explore the relevant parameter range, by varying the location of the warp radius R w and the propagation speed of the warp. We find that the dissipation associated with the twisting of the disc results in a large increase in the accretion rate through the disc, so that AGN accreting from a misaligned disc are likely to be significantly more luminous than those accreting from a flat disc. We compute explicitly the time-scales for the warping of the disc and for the alignment process and compare our results with earlier estimates based on simplified steady-state solutions. We also confirm earlier predictions that, under appropriate circumstances, accretion can proceed in a counter-aligned fashion, so that the accreted material will spin-down the hole, rather than spinning it up. Our results have implication in a number of different observational features of AGN such as the orientation and shape of jets, the shape of X-ray iron lines and the possibility of obscuration and absorption of X-ray by the outer disc as well as the general issue of the spin history of black holes during their growth.  相似文献   

8.
The aim of this work is to demonstrate the properties of the magnetospheric model around Kerr black holes (BHs), the so-called fly-wheel (rotation driven) model. The fly-wheel engine of the BH–accretion disc system is applied to the statistics of QSOs/AGNs. In the model, the central BH is assumed to be formed at z ∼102 and obtains nearly maximum but finite rotation energy (∼extreme Kerr BH) at the formation stage. The inherently obtained rotation energy of the Kerr BH is released through a magnetohydrodynamic process. This model naturally leads to a finite lifetime of AGN activity.
Nitta, Takahashi & Tomimatsu clarified the individual evolution of the Kerr BH fly-wheel engine, which is parametrized by BH mass, initial Kerr parameter, magnetic field near the horizon and a dimensionless small parameter. We impose a statistical model for the initial mass function (IMF) of an ensemble of BHs using the Press–Schechter formalism. With the help of additional assumptions, we can discuss the evolution of the luminosity function and the spatial number density of QSOs/AGNs.
By comparing with observations , it is found that a somewhat flat IMF and weak dependence of the magnetic field on the BH mass are preferred. The result explains well the decrease of very bright QSOs and decrease of population after z ∼2.  相似文献   

9.
We compute two-point correlation functions and measure the shear signal due to galaxy–galaxy lensing for 80 000 optically identified and 5700 radio-loud active galactic nuclei (AGN) from Data Release 4 of the Sloan Digital Sky Survey. Halo occupation models are used to estimate halo masses and satellite fractions for these two types of AGN. The large sample size allows us to separate AGN according to the stellar mass of their host galaxies. We study how the halo masses of optical and radio AGN differ from those of the parent population at fixed   M *  . Halo masses deduced from clustering and from lensing agree satisfactorily. Radio AGN are found in more massive haloes than optical AGN: in our samples, their mean halo masses are  1.6 × 1013  and  8 × 1011  h −1 M  , respectively. Optical AGN follow the same relation between stellar mass and halo mass as galaxies selected without regard to nuclear properties, but radio-loud AGN deviate significantly from this relation. The dark matter haloes of radio-loud AGN are about twice as massive as those of control galaxies of the same stellar mass. This boost is independent of radio luminosity, and persists even when our analysis is restricted to field galaxies. The large-scale gaseous environment of the galaxy clearly plays a crucial role in producing observable radio emission. The dark matter halo masses that we derive for the AGN in our two samples are in good agreement with recent models in which feedback from radio AGN becomes dominant in haloes where gas cools quasi-statically.  相似文献   

10.
Fluorescent iron line profiles currently provide the best diagnostic for engine geometries of active galactic nuclei (AGN). Here we construct a method for calculating the relativistic iron line profile from an arbitrarily warped accretion disc, illuminated from above and below by hard X-ray sources. This substantially generalizes previous calculations of reprocessing by accretion discs by including non-axisymmetric effects. We include a relativistic treatment of shadowing by ray-tracing photon paths along Schwarzschild geodesics. We apply this method to two classes of warped discs, and generate a selection of resulting line profiles. New profile features include a time-varying line profile if the warp precesses about the disc, profile differences between 'twisted' and 'twist-free' warps and the possibility of steeper red and softer blue fall-offs than for flat discs. We discuss some qualitative implications of the line profiles in the context of Type I and II Seyfert AGN and other sources.  相似文献   

11.
We derive accretion rate functions (ARFs) and kinetic luminosity functions (KLFs) for jet-launching supermassive black holes. The accretion rate as well as the kinetic power of an active galaxy is estimated from the radio emission of the jet. For compact low-power jets, we use the core radio emission while the jet power of high-power radio-loud quasars is estimated using the extended low-frequency emission to avoid beaming effects. We find that at low luminosities the ARF derived from the radio emission is in agreement with the measured bolometric luminosity function (BLF) of active galactic nucleus (AGN), i.e. all low-luminosity AGN launch strong jets. We present a simple model, inspired by the analogy between X-ray binaries (XRBs) and AGN, that can reproduce both the measured ARF of jet-emitting sources as well as the BLF. The model suggests that the break in power-law slope of the BLF is due to the inefficient accretion of strongly sub-Eddington sources. As our accretion measure is based on the jet power it also allows us to calculate the KLF and therefore the total kinetic power injected by jets into the ambient medium. We compare this with the kinetic power output from supernova remnants (SNRs) and XRBs, and determine its cosmological evolution.  相似文献   

12.
Over the last few years X-ray observations of broad-line radio galaxies (BLRGs) by ASCA , RXTE and BeppoSAX have shown that these objects seem to exhibit weaker X-ray reflection features (such as the iron K α line) than radio-quiet Seyferts. This has lead to speculation that the optically thick accretion disc in radio-loud active galactic nuclei (AGN) may be truncated to an optically thin flow in the inner regions of the source. Here, we propose that the weak reflection features are a result of reprocessing in an ionized accretion disc. This would alleviate the need for a change in accretion geometry in these sources. Calculations of reflection spectra from an ionized disc for situations expected in radio-loud AGN (high accretion rate, moderate-to-high black hole mass) predict weak reprocessing features. This idea was tested by fitting the ASCA spectrum of the bright BLRG 3C 120 with the constant density ionized disc models of Ross & Fabian. A good fit was found with an ionization parameter of   ξ ∼4000 erg cm s-1  and the reflection fraction fixed at unity. If observations of BLRGs by XMM-Newton show evidence for ionized reflection then this would support the idea that a high accretion rate is likely required to launch powerful radio jets.  相似文献   

13.
We present new observational results that conclude that the nearby radio galaxy B2 0722+30 is one of the very few known disc galaxies in the low-redshift Universe that host a classical double-lobed radio source. In this paper, we use H  i observations, deep optical imaging, stellar population synthesis modelling and emission-line diagnostics to study the host galaxy, classify the active galactic nucleus (AGN) and investigate environmental properties under which a radio-loud AGN can occur in this system. Typical for spiral galaxies, B2 0722+30 has a regularly rotating gaseous disc throughout which star formation occurs. Dust heating by the ongoing star formation is likely responsible for the high infrared luminosity of the system. The optical emission-line properties of the central region identify a Low Ionization Nuclear Emission-line Region (LINER)-type nucleus with a relatively low [O  iii ] luminosity, in particular when compared with the total power of the Fanaroff & Riley type-I radio source that is present in this system. This classifies B2 0722+30 as a classical radio galaxy rather than a typical Seyfert galaxy. The environment of B2 0722+30 is extremely H  i -rich, with several nearby interacting galaxies. We argue that a gas-rich interaction involving B2 0722+30 is a likely cause for the triggering of the radio AGN and/or the fact that the radio source managed to escape the optical boundaries of the host galaxy.  相似文献   

14.
We present the results of a K -band imaging survey of 40 arcmin2 in fields around 14 radio-loud active galactic nuclei (AGN), comprising six radio galaxies and eight quasars, with z >1.5. The survey, which is 80 per cent complete to K <19.2 mag and complemented by R -band imaging, aimed at investigating whether extremely red objects are present in excess around high- z AGN, and to study the environment of z >1.5 radio galaxies and radio-loud quasars. At 18< K <19 mag, the differential galaxy counts in our fields suggest a systematic excess over the general field counts. At K <19.2 mag we find an excess of galaxies with R − K >6 in comparison with the general field. Consistently, we also find that the R − K colour distribution of all the galaxies in the AGN fields is significantly redder than the colour distribution of the field galaxies. On the other hand, the distribution of the R − K colours is indistinguishable from that of galaxies taken from literature fields around radio-loud quasars at 1< z <2. We discuss the main implications of our findings and we compare the possible scenarios that could explain our results.  相似文献   

15.
We present the results of fitting deep off-nuclear optical spectra of radio-quiet quasars, radio-loud quasars and radio galaxies at z ≃0.2 with evolutionary synthesis models of galaxy evolution. Our aim was to determine the age of the dynamically dominant stellar populations in the host galaxies of these three classes of powerful active galactic nuclei (AGN). Some of our spectra display residual nuclear contamination at the shortest wavelengths, but the detailed quality of the fits longward of the 4000-Å break provides unequivocal proof, if further proof were needed, that quasars lie in massive galaxies with (at least at z ≃0.2) evolved stellar populations. By fitting a two-component model we have separated the very blue (starburst and/or AGN contamination) from the redder underlying spectral energy distribution, and find that the hosts of all three classes of AGN are dominated by old stars of age 8–14 Gyr. If the blue component is attributed to young stars, we find that, at most, 1 per cent of the visible baryonic mass of these galaxies is involved in star formation activity at the epoch of observation, at least over the region sampled by our spectroscopic observations. These results strongly support the conclusion reached by McLure et al. that the host galaxies of luminous quasars are massive ellipticals which have formed by the epoch of peak quasar activity at z ≃2.5.  相似文献   

16.
Gravitational wave emission by coalescing black holes (BHs) kicks the remnant BH with a typical velocity of hundreds of  km s−1  . This velocity is sufficiently large to remove the remnant BH from a low-mass galaxy but is below the escape velocity from the Milky Way (MW) galaxy. If central BHs were common in the galactic building blocks that merged to make the MW, then numerous BHs that were kicked out of low-mass galaxies should be freely floating in the MW halo today. We use a large statistical sample of possible merger tree histories for the MW to estimate the expected number of recoiled BH remnants present in the MW halo today. We find that hundreds of BHs should remain bound to the MW halo after leaving their parent low-mass galaxies. Each BH carries a compact cluster of old stars that populated the core of its original host galaxy. Using the time-dependent Fokker–Planck equation, we find that the present-day clusters are  ≲1 pc  in size, and their central bright regions should be unresolved in most existing sky surveys. These compact systems are distinguishable from globular clusters by their internal (Keplerian) velocity dispersion greater than 100 km s−1 and their high mass-to-light ratio owing to the central BH. An observational discovery of this relic population of star clusters in the MW halo would constrain the formation history of the MW and the dynamics of BH mergers in the early Universe. A similar population should exist around other galaxies and may potentially be detectable in M31 and M33.  相似文献   

17.
Extragalactic H2O megamasers are typically found within the innermost few parsecs of active galaxy nuclei (AGN) and the maser emission is considered to be excited most likely by the X-ray irradiation of the AGN.We investigate a comprehensive sample of extragalactic H2O masers in a sample of 38 maser host AGN to check potential correlations of the megamaser emission with parameters of the AGN,such as X-ray luminosity and black hole (BH) masses.We find a relation between the maser luminosities and BH masses,LH2O∝ M3.64-0.4 BH,which supports basically the theoretical prediction.The relation between the maser emission and X-ray emission is also confirmed.  相似文献   

18.
In this paper we look at one of the effects of irradiation on a warped accretion disc in the context of active galactic nuclei (AGN). A warp will catch a substantial amount of the radiation emitted by the central object. We consider the fluid motions that may arise inside a warped disc when the surface is subject to a radiation stress, and also the net mass flows that result. We find that, to first order, we have a balance of the viscous and Coriolis-type forces. The radial radiation stress causes outward motion of the surface layer, but only the azimuthal Poynting–Robertson drag leads to an increase in the net accretion rate. We investigate the distribution of the velocity perturbations and find them to be significant in determining the local structure of the disc.
An unexpected result is that the picture changes significantly when we take into account the periodic illumination of the warped disc. A type of resonance at the local Keplerian rotation frequency causes a flow that penetrates the whole thickness of the disc; these flows are faster than the flows due to unchanging illumination. They totally dominate the induced flows in terms of sheer mass, but significant impact on disc structure still occurs only near the surface, where velocity perturbations typically go up to some kilometres per second.  相似文献   

19.
We use the innermost kinematics of spirals to investigate whether these galaxies could host the massive black hole remnants that once powered the quasi-stellar object (QSO) phenomenon. Hundreds of rotation curves of early- and late-type spirals are used to place upper limits on the central black hole (BH) masses. We find that (i) in late-type spirals, the central massive dark objects (MDOs) are about 10–100 times smaller than the MDOs detected in ellipticals, and (ii) in early-type spirals, the central bodies are likely to be in the same mass range as the elliptical MDOs. As a consequence, the contribution to the QSO/active galactic nuclei (AGN) phenomenon by the BH remnants eventually hosted in spirals is negligible: ρ BH(Sb–Im)<6×104 M Mpc−3 . We find several hints that the MDO mass versus bulge mass relationship is significantly steeper in spirals than in ellipticals, although the very issue of the existence of such a relation for late Hubble type objects remains open. The upper limits on the masses of the BHs resident in late-type spirals are stringent: M BH106–107 M, indicating that only low-luminosity activity could possibly have occurred in these objects .  相似文献   

20.
We consider the shape of an accretion disc whose outer regions are misaligned with the spin axis of a central black hole and calculate the steady state form of the warped disc in the case where the viscosity and surface densities are power laws in the distance from the central black hole. We discuss the shape of the resulting disc in both the frame of the black hole and that of the outer disc. We note that some parts of the disc and also any companion star maybe shadowed from the central regions by the warp. We compute the torque on the black hole caused by the Lense–Thirring precession, and hence compute the alignment and precession time-scales. We generalize the case with viscosity and hence surface density independent of radius to more realistic density distributions for which the surface density is a decreasing function of radius. We find that the alignment time-scale does not change greatly but the precession time-scale is more sensitive. We also determine the effect on this time-scale if we truncate the disc. For a given truncation radius, the time-scales are less affected for more sharply falling density distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号