首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jakobshavns Isbræ in West Greenland (terminus at ≈69° 10′ N/50° W), a major outlet glacier of the Greenland Ice Sheet and a continuously fast-moving ice stream, has long been the fastest moving and one of the most productive glaciers on Earth. It had been moving continuously at speeds of over 20 m/day with a stable front position throughout most of the latter half of the twentieth century, except for relatively small seasonal changes. In 2002, the ice stream apparently suddenly entered a phase of rapid retreat. The ice front started to break up, the floating tongue disintegrated, and the production of icebergs increased. In July 2005, we conducted an extensive aerial survey of Jakobshavns Isbræ to measure and document the present state of retreat compared to our previous field observations since 1996. We use an approach that combines structural analysis of deformation features with continuum mechanics to assess the kinematics and dynamics of glaciers, based on aerial imagery, satellite data and GPS measurements. Results from interpretation of ERS-SAR and ASTER data from 1995 to 2005 in combination with aerial imagery from 1996 to 2005 shed light on the question of changes versus stability and their causes in the Jakobshavns Isbræ dynamical system. The recently observed retreat of Jakobshavns Isbræ is attributed to climatic warming, rather than to an inherent change in the glaciodynamic system. Close to the retreating front, deformation structures are characteristic of extension and disintegration. Deformation provinces that do not border the retreating front have had the same deformation characteristics throughout the past decade (1996–2005).  相似文献   

2.
1978-2015年喀喇昆仑山克勒青河流域冰川变化的遥感监测   总被引:1,自引:1,他引:0  
本文采用1978、1991、2001和2015年的Landsat MSS、TM、ETM+和OLI遥感影像,通过遥感图像计算机辅助分类和目视解译等方法提取冰川边界,分析喀喇昆仑山克勒青河流域冰川在1978-2015年间的进退变化。结果表明:1978-2015年间研究区冰川面积由1821.70 km2减少至1675.92 km2,减少145.78 km2,占1978年冰川总面积的8.00%;冰川消融率较低,在气候变暖的背景下反而呈现出退缩速率由快变慢的趋势。研究区东南向冰川退缩率明显高于西北向,冰川退缩率随冰川规模的增大而减小。研究区内有27处冰川在1978-2015年间发生过特殊的前进现象,面积与长度显著增加。其中,木斯塔冰川西侧冰川末端在1996-1998年间前进速度为904 m/a,乔戈里冰川东侧冰川末端在2007-2009年间前进速度为446 m/a,5Y654D0097冰川末端在1978-1990年间前进速度为238 m/a,初步判定这三条冰川为跃动冰川。以10 a为滞后期分析研究区周边气象站点资料发现:研究区气温持续升高,降水量以1981年为分界点呈现“先减后增”趋势是冰川退缩速率减慢的原因之一;此外,亚大陆型冰川性质、巨大山势条件和高山冷储作用,也可能是冰川退缩幅度较小的原因。  相似文献   

3.
Glacier Benito is a temperate outlet glacier on the west side of the North Patagonian Icefield. Rates of thinning and ablation were obtained using data collected by the British Joint Services Expedition in 1972/73 and subsequent data collected in 2007 and 2011. Ice‐front recession rates were based on dendrochronological dating for the terminal moraines and aerial and satellite imagery of the ice front in 1944, 1998 and 2002. Between the first Benito survey in 1973 and 2007, the lower glacier thinned by nearly 150 m at an average rate of 4.3 m yr?1 with the rate increasing to 6.1 m yr?1 between 2007 and 2011, a 28.7% increase during the latter period. Increases in ice movement and ablation were negligible: ice movement for 1973 and 2007 averaged 0.45 m day?1 and ablation averaged 0.05 m day?1. Ice front recession along the glacier's centre line from 1886 to 2002 was approximately 1860 m. Retreat rates between 1886 and 1944 averaged 8.9 m yr?1. Thereafter glacier asymmetry makes measurement along the glacier centre line unrepresentative of areal change until 1998 when symmetry was restored; retreat between 1944 and 1998 was 15.4 m yr?1. From 1998 to 2002 the rate increased dramatically to 127.2 m yr?1. Recession from the southern end of Benito's terminal moraine in the 1850s supports an early date for initial retreat of the Icefield's glaciers.  相似文献   

4.
Monica Sund 《Polar research》2006,25(2):115-122
Surging glaciers are common in Svalbard yet relatively few glaciers have been observed during a surge. This paper presents observations of the currently surging glacier Skobreen, in southern Spitsbergen. The study is based on examinations of new and archival photographs and maps. Skobreen, an 18 km2 valley glacier terminating into the lower part of the glacier Paulabreen, has not been registered previously as a surging glacier. Skobreen experienced a build-up in its upper part, while there has been a lowering of the surface in the terminal region. Photographs from 1990 show incipient crevassing in the upper part. Photographs from 2003 show a slight advance of the terminus and marginal crevassing, indicating an initiation period of about 15 years for a surge of this glacier. In June 2005 transverse crevassing appeared in the upper part of the glacier, while the middle section moved as a block with strong shear margins and a pronounced drawdown of the ice surface. No traces of a surge front could be seen in the crevasse pattern. However, the crevasse pattern indicates an initiation area in the transition zone between the transverse crevassing in the upper part and the block of ice in the middle region.  相似文献   

5.
6.
1970-2016年冈底斯山冰川变化   总被引:2,自引:0,他引:2  
基于修订后的中国两次冰川编目数据及2015-2016年Landsat OLI遥感影像,对冈底斯山1970-2016年的冰川时空变化特征进行分析,并利用相应时段的气温和降水数据,对冰川变化原因进行探讨,为全面认识冈底斯山在气候变暖背景下冰川的响应规律及区域水资源合理利用提供科学依据。结果表明:① 2015-2016年冈底斯山共有冰川3953条,面积1306.45 km 2,冰储量约58.16 km 3;冰川数量以面积< 0.5 km 2的冰川为主,面积则以介于0.1~5 km 2的冰川为主。② 1970-2016年冈底斯山冰川面积共减少854.05 km 2(-39.53%),冰川面积变化相对速率高达-1.09%/a,消融期气温升高是导致该山区冰川退缩的最主要原因。与中国西部其他山系冰川变化相比,冈底斯山是冰川退缩最为强烈的地区,且近年来冰川退缩呈加快趋势。③ 冈底斯山冰川面积减少主要集中在海拔5600~6100 m之间,海拔6500 m以上区域基本没有变化。除南朝向和东南朝向外,冈底斯山其他朝向冰川数量和面积均呈减少趋势,其中北朝向冰川面积减少最多,西北朝向冰川面积变化最快。④ 冈底斯山冰川面积变化自西向东呈加快趋势,其中东段冰川面积变化相对速率高达-1.72%/a,中段次之(-1.67%/a),西段仅为-0.83%/a。  相似文献   

7.
利用Landsat影像,EDM影像等数据资料,使用遥感图像处理及目视解译方法提取了喜马拉雅山东段中国与不丹边境地区冰川从1990—2015年4期边界,研究其与气温降水变化关系,并选取特定冰川,对其表面流速进行估算。研究表明:1990—2015年,该地区冰川退缩速率达0.43%·a-1,并且冰川年退缩率逐渐增大,表明冰川消融速度逐渐加快。该时段内,气温呈现明显上升趋势,导致了冰川的快速消融。通过对冰川表面流速的估算,得出中国与不丹边境地区研究选取的冰前湖对冰川流速具有促进作用,加速冰川消融。  相似文献   

8.
细胞周期检测点激酶2(checkpoint kinase 2,CHEK2)是由CHEK2基因编码的DNA双链断裂损伤的重要信号转导蛋白,参与G1期、S期和G2/M期的阻滞。CHEK2基因突变和乳腺癌病理特征与预后相关,是乳腺癌重要的易感基因。CHEK2有1100delC、Y390C以及I157T等多种突变形式,通过多条不同通路,如SDF-1和IL-6、BRCA1/2等影响细胞周期监测点的功能。在化疗方面,寻找CHEK2抑制剂以增强化疗或放疗对肿瘤细胞的杀伤效果也是当前的研究热点之一。本文针对乳腺癌中CHEK2突变的形式、机制以及可能的治疗靶点做一综述。  相似文献   

9.
The glaciers in the Sanjiangyuan Nature Reserve of China (SNRC) are a significant water resource for the Yangtze,Yellow,and Mekong rivers.Based on Landsat Thematic Mapper(TM)/Operational Land Imager (OLI) images acquired in 2000,2010,and 2018,the outlines of glaciers in the SNRC were obtained by combining band ratio method with manual interpretation.There were 1714 glaciers in the SNRC in 2018,with an area of 2331.15±54.84 km2,an ice volume of 188.90±6.41 km3,and an average length of 1475.4±15 m.During 2000-2018,the corresponding values of glaciers decreased by 69,271.95±132.06 km2,18.59±8.83 km3,and 84.75±34 m,respectively.Glaciers in the Yangtze River source area witnessed the largest area loss (-154.45 km2),whereas glaciers in the Mekong River source area experienced the fastest area loss (-2.02%·a-1) and the maximum reduction of the average length (-125.82 m).Overall,the retreat of glaciers in the SNRC exhibited an accelerating trend.Especially,the loss rate of glacier area in the Yellow River source area in 2010-2018 was more than twice that in 2000-2010.The glacier change is primarily attributed to the significant rise in temperature during the ablation period.Some other factors including the size,orientation and terminus elevation of glaciers also contributed to the heterogeneity of glacier change.  相似文献   

10.
The retreat of 293 glaciers in the Tien Shan Mountains (Kyrgyz Republic) from their maximum extent during the Little Ice Age (LIA) is estimated using aerial photographs from 1980 to 1985 and maps at a scale of 1:25000, constructed during period 1956–1990. Two indices of changes are used: the linear distance from the glacier terminus to its Little Ice Age moraine and the difference in absolute elevation of the terminus and the moraine. Historical information about the front positions of glaciers in the 1880s to the 1930s was used as an indirect control of remote sensing data. The age of moraines in key regions was estimated by lichenometry. On average, Tien Shan glaciers have retreated by 989 ± 540 m since the LIA maximum. Their front elevations (dh) rose by 151 ± 105 m. These changes are similar to changes observed in the Alps and western Norway, Pamir‐Alay and Koryak plateau, but greater than in east Siberia over the same interval. Differences between four regions in Tien Shan (northern, western, inner, central) are generally small, though in the northern Tien Shan the glacier retreat and frontal rise are more prominent (1065 ± 479 m and 215 ± 140 m, respectively).  相似文献   

11.
Glaciers are one of the most important land covers in alpine regions and especially sensitive to global climate change. Remote sensing has proved to be the best method of investigating the extent of glacial variations in remote mountainous areas. Using Landsat thematic mapping (TM) and multi-spectral-scanner (MSS) images from Mt. Qomolangma (Everest) National Nature Preserve (QNNP), central high Himalayas for 1976, 1988 and 2006, we derived glacial extent for these three periods. A combination of object-oriented image interpretation methods, expert knowledge rules and field surveys were employed. Results showed that (1) the glacial area in 2006 was 2710.17 ± 0.011 km2 (about 7.41% of the whole study area), and located mainly to the south and between 4700 m to 6800 m above sea level; (2) from 1976 to 2006, glaciers reduced by 501.91 ± 0.035 km2 and glacial lakes expanded by 36.88 ± 0.035 km2; the rate of glacier retreat was higher in sub-basins on the southern slopes (16.79%) of the Himalayas than on the northern slopes (14.40%); most glaciers retreated, and mainly occurred at an elevation of 4700–6400 m, and the estimated upper limit of the retreat zone is between 6600 m and 6700 m; (3) increase in temperature and decrease in precipitation over the study period are the key factors driving retreat.  相似文献   

12.
Twentieth-century changes in Norwegian glaciers have been pronounced, but the different geometries and dynamics of the glaciers have caused different responses to similar climatic changes. Close to the Arctic Circle, all the glaciers of Svartisen, the largest ice-covered area of northern Scandinavia, have retreated since the beginning of the century. However, several of the smaller glaciers which end at relatively high altitude have experienced both periods of advance and periods of retreat since the mid-1960s. The mass balance of Engabreen, the largest of the West Svartisen glaciers, was positive in 21 of the 27 years to 1995–96. The sizes of most of the glaciers of the Okstindan area, 60 km south-east of Svartisen, have also decreased throughout the twentieth century, but Corneliussens Bre, a small glacier at the eastern side of the massif, has been advancing since 1970. The areas supplying some of the southern glaciers of Okstindan have been reduced as a result of changes in ice thickness at high altitude. Studies of glacier change are aided by the use of digital terrain models (DTMs). Triangular irregular network DTMs of the surface and bed topography of the largest of the Okstindan glaciers, Austre Okstindbreen, have been used in studies of mass-balance variations and changing surface flow patterns between 1976 and 1995.  相似文献   

13.
In the southernmost tract of the Alps (Italian‐French Maritime Alps), extensively covered by glaciers during the Last Glacial Maximum, about 30 small glaciers were present by the end of the Little Ice Age. The aim of this paper is to document the progressive decrease towards exhaustion of these glaciers, located at the latitude of 44° N, highlighting the factors affecting their retreat. All available data sources were investigated for this work including: the annual glaciers fluctuations record, comparative analyses of historical maps and multi‐temporal oblique photographs and direct surveys in the field. The history of the Maritime Alps glaciers fluctuations was thoroughly reconstructed. Stationary conditions were observed from 1896 up to the beginning of the 1930s; since then they underwent phases of withdrawal with variable intensity. In the early 1990s, only six glaciers were still present, the extent of which were all was dramatically reduced. In the past two decades, the Maritime Alps glacier fronts experienced a global retreat of about 100 m, with a sharp acceleration after 2002. Currently ice patches along cirque walls and/or semi‐buried lenses of ice are still present; morphological evidence of permafrost creeping in the glacier forefield accounts for the incipient transition to periglacial landforms (i.e. rock glaciers). The main factors controlling glaciers retreat seem to have been their original extent at the beginning of the current regressive phase and their distance from the main chain divide. From a climatic point of view unfavourable factors for glaciers persistence have been in the last decades a remarkable and sharp temperature increase, a decrease in winter snowfall and a shift of the rainfall peak from autumn to spring.  相似文献   

14.
冀琴  刘睿  杨太保 《地理研究》2020,39(10):2403-2414
基于Landsat系列遥感数据,运用比值阈值法(B3/B5)和目视解译,研究1990—2015年喜马拉雅山冰川面积的分布与变化特征。结果表明:25年间研究区冰川面积共减少2553.10 km2,年均退缩率为0.44%/a,研究时段冰川加速退缩。研究区冰川主要分布在西段地区,中段次之,东段最少,近25年来西段、东段和中段地区冰川均表现为退缩趋势,其中东段地区退缩最快,中段最慢。从地形分布和变化特征看,5°~25°范围内冰川的分布面积较多,近25年来各坡度等级冰川均在退缩,其中25°~30°之间冰川面积退缩较快,在极平缓/极陡峭地区退缩较慢。尽管8个坡向上冰川均表现为退缩趋势,但退缩幅度有所差异,北坡与西北坡冰川退缩较慢,其他坡向退缩较快。研究时段表碛物覆盖型与非表碛物覆盖型冰川均在退缩,但后者的退缩幅度较大,表明研究区表碛物在一定程度上抑制了冰川消融。  相似文献   

15.
念青唐古拉山作为青藏高原东南缘重要山古冰川分布区,受季风影响,各区域冰川变化特征差异明显。论文通过Landsat TM/ETM+/OLI资料、ASRTMGDEM与气象数据,采用比值—阈值法、目视解译和VOLTA模型,结合实地考察,对1990—2020年间念青唐古拉山中段北坡边坝地区现代冰川进退状况、面积变化、冰储量变化以及冰川变化对气候变化响应特征进行研究。结果表明:① 1990—2020年5条冰川(玉贡拉冰川、玛拉波冰川、祥格拉冰川、孔嘎冰川、贡日—庚东冰川)末端高程逐渐升高,面积和冰储量分别减少30.38 km2和4.64 km3,总体缩减并呈现加速趋势。② 冰川冰储量减少0.14~1.92 km3,总体变化率为0.40%·a-1。2020年上述5条冰川储量占1990年冰川储量的比例分别为0.70、0.99、0.98、0.91和0.82,显示出冰川规模越大,在短时间尺度的变化量越小。③ 气象数据分析显示,1990—2020年研究区冰川变化受气温升高主导,平均气温变化率为0.51 ℃。水热组合呈现温度升高—降水减少,且在最后10 a日益显著,预测未来冰川变化仍受气温控制并呈加速退缩趋势。④ 区域对比研究表明,念青唐古拉山冰川面积变化总体呈退缩状态,但各区域冰川变化特征差异明显。同时,不同研究方法对同一冰川区冰储量模拟结果相差较大,相对误差范围为34.45%~115.49%,精确的冰储量可对比研究方法仍有待进一步研究。  相似文献   

16.
The identification of surge activity is important in assessing the duration of the active and quiescent phases of the surge cycle of Svalbard glaciers. Satellite and aerial photographic images are used to identify and describe the form and flow of Perseibreen, a valley glacier of 59 km2 on the east coast of Spitsbergen. Heavy surface crevassing and a steep ice front, indicative of surge activity, were first observed on Perseibreen in April 2002. Examination of high resolution (15 m) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery confirmed this surge activity. Perseibreen retreated by almost 750 m between 1961 and 1990. Between 1990 and the summer of 2000, Perseibreen switched from retreat and its front began to advance. Rapid advance was underway during the period June 2000 to May 2001, with terminus advance at over 400 m yr−1. Between May and August 2001 the rate increased to over 750 m yr−1. The observed crevasse orientation indicates that ice was in longitudinal tension, suggesting the down-glacier transfer of mass. Ice surface velocities, derived from image correlation between ASTER images, were 2-2.5 m d−1 between May and August 2001. The glacier was flowing at a relatively uniform speed with sharp velocity gradients located close to its lateral margins, a velocity structure typical of ice masses in the active phase of the surge cycle. The stress regime is extensional throughout and the surge appears to be initiated low on the glacier. This is similar to the active-phase dynamics of other Svalbard tidewater glaciers. Perseibreen has probably been inactive since at least 1870, a period of about 130 years to the present surge which defines a minimum length for the quiescent phase.  相似文献   

17.
Glaciers are one of the most important land covers in alpine regions and especially sensitive to global climate change. Remote sensing has proved to be the best method of investigating the extent of glacial variations in remote mountainous areas. Using Landsat thematic mapping (TM) and multi-spectral-scanner (MSS) images from Mt. Qomolangma (Everest) National Nature Preserve (QNNP), central high Himalayas for 1976, 1988 and 2006, we derived glacial extent for these three periods. A combination of object-oriented image interpretation methods, expert knowledge rules and field surveys were employed. Results showed that (1) the glacial area in 2006 was 2710.17 ± 0.011 km2 (about 7.41% of the whole study area), and located mainly to the south and between 4700 m to 6800 m above sea level; (2) from 1976 to 2006, glaciers reduced by 501.91 ± 0.035 km2 and glacial lakes expanded by 36.88 ± 0.035 km2; the rate of glacier retreat was higher in sub-basins on the southern slopes (16.79%) of the Himalayas than on the northern slopes (14.40%); most glaciers retreated, and mainly occurred at an elevation of 4700–6400 m, and the estimated upper limit of the retreat zone is between 6600 m and 6700 m; (3) increase in temperature and decrease in precipitation over the study period are the key factors driving retreat.  相似文献   

18.
Both marginal fluctuation and areal change were used to detect the accurate dynamics of glacier change in the study area using Landsat MSS, ETM, SPOT HRV and topographic maps based on GIS. From 1963 to 1977, four of eight glaciers advanced, two of them retreated and another two kept stable, the glacier advanced generally. From 1977 to 1986, four of eight glaciers retreated and the others kept stable, but the retreated glaciers were those which advanced from 1963 to 1977. From 1986 to 2000, seven of eight glaciers retreated and only one glacier kept stable, the retreating velocity was 10-15 m/a. Glacier recession in this period became very fast and universal. From 1963 to 2000, the area of glaciers decreased from 5479.0 ha to 4795.4 ha, up to 12.5%. It is alarming that most of glacier retreats happened from 1986 to 2000. This was very consistent with change process of summer mean temperature in this region and global warming beginning in the 1980s.  相似文献   

19.
1990-2011年西昆仑峰区冰川变化的遥感监测   总被引:2,自引:0,他引:2  
本文应用Landsat 5、7 TM、ETM+影像分析1990-2011年昆仑山西段昆仑峰区冰川变化特征,结果表明:1990-2011年冰川面积减少16.83 km2,退缩率仅为0.65%,冰川退缩趋势不明显。单条冰川变化有进有退,中峰冰川末端在2002-2004年以661 m/a的速率前进,初步判定为跃动冰川。1991-1998年,崇测冰川面积增加9.47 km2,冰川末端以200 m/a的速率前进,不排除有跃动冰川的可能性。尽管近年来全球气温普遍上升,大量冰川处于退缩状态,但统计已有研究结果发现近50年来青藏高原存在冰川长度、面积增加,冰川物质平衡为正的现象,表现出冰川对气候变化复杂的反馈机制。通过分析气象站点和冰芯资料,研究区周边地区气温上升、降水量缓慢增加可能是冰川微弱退缩的原因之一;增强的西风环流带来更多的降水、研究区以极大陆型大规模冰川为主,也可能是冰川退缩幅度较小的原因。  相似文献   

20.
近40年天山冰川变化的遥感监测   总被引:3,自引:0,他引:3  
Both marginal fluctuation and areal change were used to detect the accurate dynamics of glacier change in the study area using Landsat MSS, ETM, SPOT HRV and topographic maps based on GIS. From 1963 to 1977, four of eight glaciers advanced, two of them retreated and another two kept stable, the glacier advanced generally. From 1977 to 1986, four of eight glaciers retreated and the others kept stable, but the retreated glaciers were those which advanced from 1963 to 1977. From 1986 to 2000, seven of eight glaciers retreated and only one glacier kept stable, the retreating velocity was 10-15 m/a. Glacier recession in this period became very fast and universal. From 1963 to 2000, the area of glaciers decreased from 5479.0 ha to 4795.4 ha, up to 12.5%. It is alarming that most of glacier retreats happened from 1986 to 2000. This was very consistent with change process of summer mean temperature in this region and global warming beginning in the 1980s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号