首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We present an analysis of X-ray variability in a flux-limited sample of quasi-stellar objects (QSOs). Selected from our deep ROSAT survey, these QSOs span a wide range in redshift (0.1< z <3.2) and are typically very faint, so we have developed a method to constrain the amplitude of variability in ensembles of low signal-to-noise ratio light curves. We find evidence for trends in this variability amplitude with both redshift and luminosity. The mean variability amplitude declines sharply with luminosity, as seen in local active galactic nuclei (AGN), but with some suggestion of an upturn for the most powerful sources. We find tentative evidence that this is caused by redshift evolution, since the high-redshift QSOs ( z >0.5) do not show the anticorrelation with luminosity seen in local AGN. We speculate on the implications of these results for physical models of AGN and their evolution. Finally, we find evidence for X-ray variability in an object classified as a narrow-emission-line galaxy, suggesting the presence of an AGN.  相似文献   

2.
We investigate the clustering properties of galaxies in the recently completed ELAIS-S1 redshift survey through their spatial two-point autocorrelation function. We used a subsample of the ELAIS-S1 catalogue covering approximately 4 deg2 and consisting of 148 objects selected at 15 μm with a flux >0.5 mJy and a redshift   z < 0.5  . We detected a positive signal in the correlation function that in the range of separations  1–10  h −1 Mpc  is well approximated by a power law with a slope  γ= 1.4 ± 0.25  and a correlation length   s 0= 5.4 ± 1.2  h −1 Mpc  , at the 90 per cent significance level. This result is in good agreement with the redshift-space correlation function measured in more local samples of mid-infrared-selected galaxies such as the IRAS Point Source Catalog (PSC z ) redshift survey. This suggests a lack of significant clustering evolution of infrared-selected objects out to   z = 0.5  that is further confirmed by the consistency found between the correlation functions measured in a local  ( z < 0.2)  and a distant  (0.2 < z < 0.5)  subsample of ELAIS-S1 galaxies. We also confirm that optically selected galaxies in the local redshift surveys, especially those of the SDSS sample, are significantly more clustered than infrared objects.  相似文献   

3.
We describe the selection of a sample of 34 radio sources from the 6C survey from a region of sky covering 0.133 sr. The selection criteria for this sample, hereafter called 6C*, were chosen to optimize the chances of finding radio galaxies at redshift z  > 4. Optical follow-up observations have already led to the discovery of the most distant known radio galaxy at z  = 4.41. We present VLA radio maps and derive radio spectra for all the 6C* objects.  相似文献   

4.
We report the first results of an observational programme designed to determine the luminosity density of high-redshift quasars     quasars) using deep multicolour CCD data. We report the discovery and spectra of three     high-redshift     quasars, including one with     . At     , this is the fourth highest redshift quasar currently published. Using these preliminary results we derive an estimate of the         quasar space density in the redshift range     of     . When completed, the survey will provide a firm constraint on the contribution to the ionizing UV background in the redshift range     from quasars by determining the faint-end slope of the quasar luminosity function. The survey uses imaging data taken with the 2.5-m Isaac Newton Telescope as part of the Public Isaac Newton Group Wide Field Survey (WFS). This initial sample of objects is taken from two fields of effective area ∼12.5 deg2 from the final ∼100 deg2.  相似文献   

5.
Little is known about the statistics of gravitationally lensed quasars at large (7–30 arcsec) image separations, which probe masses on the scale of galaxy clusters. We have carried out a survey for gravitationally lensed objects, among sources in the FIRST 20-cm radio survey that have unresolved optical counterparts in the digitizations of the Palomar Observatory Sky Survey. From the statistics of ongoing surveys that search for quasars among FIRST sources, we estimate that there are about 9100 quasars in this source sample, making this one of the largest lensing surveys to date. Using broad-band imaging, we have isolated all objects with double radio components separated by 5–30 arcsec that have unresolved optical counterparts with similar BVI colours. Our criteria for similar colours conservatively allow for observational error and for colour variations due to time delays between lensed images. Spectroscopy of these candidates shows that none of the pairs are lensed quasars. This sets an upper limit (95 per cent confidence) on the lensing fraction in this survey of 3.3×10−4, assuming 9100 quasars. Although the source redshift distribution is poorly known, a rough calculation of the expected lensing frequency and the detection efficiencies and biases suggests that simple theoretical expectations are of the same order of magnitude as our observational upper limit. Our procedure is novel in that our exhaustive search for lensed objects does not require prior identification of the quasars in the sample as such. Characterization of the FIRST-selected quasar population will enable use of our result to constrain quantitatively the mass properties of clusters.  相似文献   

6.
We present observations of a new double-image gravitational lens system, ULAS J082016.1+081216, of image separation 2.3 arcsec and high (∼6) flux ratio. The system is selected from the Sloan Digital Sky Survey (SDSS) spectroscopic quasar list using new high-quality images from the UKIRT (United Kingdom Infrared Telescope) Deep Sky Survey (UKIDSS). The lensed quasar has a source redshift of 2.024, and we identify the lens galaxy as a faint red object of redshift  0.803 ± 0.001  . Three other objects from the UKIDSS survey, selected in the same way, were found not to be lens systems. Together with the earlier lens found using this method, the SDSS–UKIDSS lenses have the potential to significantly increase the number of quasar lenses found in SDSS, to extend the survey to higher flux ratios and lower separations, and to give greater completeness which is important for statistical purposes.  相似文献   

7.
We present the results of optical spectroscopy of two flux-density-limited samples of radio sources selected at frequencies of 38 and 151 MHz in the same region around the North Ecliptic Cap, the 8C-NEC and 7C- iii samples respectively. Both samples are selected at flux density levels ≈20 times fainter than samples based on the 3C catalogue. They are amongst the first low-frequency selected samples with no spectral or angular size selection for which almost complete redshift information has been obtained, and contain many of the lowest-luminosity z >2 radio galaxies so far discovered. They will therefore provide a valuable resource for understanding the cosmic evolution of radio sources and their hosts and environments. The 151-MHz 7C- iii sample is selected to have S 151≥0.5 Jy and is the more spectroscopically complete; out of 54 radio sources fairly reliable redshifts have been obtained for 44 objects. The 8C sample has a flux limit of S 38≥1.3 Jy and contains 58 sources of which 46 have fairly reliable redshifts. We discuss possible biases in the observed redshift distribution, and some interesting individual objects, including a number of cases of probable gravitational lensing. Using the 8C-NEC and 7C- iii samples in conjunction, we form the first sample selected on low-frequency flux in the rest-frame of the source, rather than the usual selection on flux density in the observed frame. This allows us to remove the bias associated with an increasing rest-frame selection frequency with redshift. We investigate the difference this selection makes to correlations of radio source properties with redshift and luminosity by comparing the results from traditional flux-density selection with our new method. We show in particular that flux-density-based selection leads to an overestimate of the steepness of the correlation of radio source size with redshift.  相似文献   

8.
We study the N H distribution in a complete sample of 88 active galactic nuclei (AGN) selected in the 20–40 keV band from INTEGRAL /Imager on Board the Integral Satellite (IBIS) observations. We find that the fraction of absorbed  ( N H≥ 1022 cm2)  sources is 43 per cent while the Compton thick AGN comprise 7 per cent of the sample. While these estimates are fully compatible with previous soft gamma-ray surveys, they would appear to be in contrast with results reported by Risaliti, Maiolino & Salvati using an optically selected sample. This apparent difference can be explained as being due to a selection bias caused by the reduction in high energy flux in Compton thick objects rendering them invisible at our sensitivity limit. Taking this into account, we estimate that the fraction of highly absorbed sources is actually in close agreement with the optically selected sample. Furthermore, we show that the measured fraction of absorbed sources in our sample decreases from 80 to ∼20–30 per cent as a function of redshift with all Compton thick AGN having   z ≤ 0.015  . If we limit our analysis to this distance and compare only the type 2 objects in our sample with the Risaliti et al. objects below this redshift value, we find a perfect match to their N H distribution. We conclude that in the low-redshift bin we are seeing almost the entire AGN population, from unabsorbed to at least mildly Compton thick objects, while in the total sample we lose the heavily absorbed 'counterparts' of distant and therefore dim sources with little or no absorption. Taking therefore this low z bin as the only one able to provide the 'true' distribution of absorption in types 1 and 2 AGN, we estimate the fraction of Compton thick objects to be ≥24 per cent.  相似文献   

9.
We present an analysis of quasar variability from data collected during a photometric monitoring of 50 objects carried out at CNPq/Laboratório Nacional de Astrofísicá, Brazil, between 1993 March and 1996 July. A distinctive feature of this survey is its photometric accuracy, ∼0.02  V  mag, achieved through differential photometry with CCD detectors, which allows the detection of faint levels of variability. We find that the relative variability, δ σ L , observed in the V band is anticorrelated with both luminosity and redshift, although we have no means of discovering the dominant relation, given the strong coupling between luminosity and redshift for the objects in our sample. We introduce a model for the dependence of quasar variability on frequency that is consistent with multiwavelength observations of the nuclear variability of the Seyfert galaxy NGC 4151. We show that correcting the observed variability for this effect slightly increases the significance of the trends of variability with luminosity and redshift. Assuming that variability depends only on the luminosity, we show that the corrected variability is anticorrelated with luminosity and is in good agreement with predictions of a simple Poissonian model. The energy derived for the hypothetical pulses, ∼1050 erg, agrees well with those obtained in other studies. We also find that the radio-loud objects in our sample tend to be more variable than the radio-quiet ones, for all luminosities and redshifts.  相似文献   

10.
As part of a large spectroscopic survey of   z > 5  Lyman break galaxies (LBGs), we have identified a single source which is clearly hosting an active galactic nucleus (AGN). Out of a sample of more than 50 spectroscopically confirmed R -band dropout galaxies at   z ∼ 5  and above, only J104048.6−115550.2 at   z = 5.44  shows evidence for a high ionization potential emission line indicating the presence of a hard ionizing continuum from an AGN. Like most objects in our sample the rest-frame-UV spectrum shows the UV continuum breaking across a Lyα line. Uniquely within this sample of LBGs, emission from N  v is also detected, a clear signature of AGN photoionization. The object is spatially resolved in Hubble Space Telescope ( HST ) imaging. This, and the comparatively high Lyα/N  v flux ratio indicates that the majority of the Lyα (and the UV continuum longward of it) originates from stellar photoionization, a product of the ongoing starburst in the LBG. Even without the AGN emission, this object would have been photometrically selected and spectroscopically confirmed as a Lyman break in our survey. The measured optical flux  ( I AB= 26.1)  is therefore an upper limit to that from the AGN and is of order 100 times fainter than the majority of known quasars at these redshifts. The detection of a single object in our survey volume is consistent with the best current models of high redshift AGN luminosity function, providing a substantial fraction of such AGN is found within luminous starbursting galaxies. We discuss the cosmological implications of this discovery.  相似文献   

11.
We present spectra for a sample of radio sources from the FIRST survey, and use them to define the form of the redshift distribution of radio sources at mJy levels. We targeted 365 sources and obtained 46 redshifts (13 per cent of the sample). We find that our sample is complete in redshift measurement to R ∼18.6, corresponding to z ∼0.2. Galaxies were assigned spectral types based on emission-line strengths. Early-type galaxies represent the largest subset (45 per cent) of the sample and have redshifts 0.15≲ z ≲0.5; late-type galaxies make up 15 per cent of the sample and have redshifts 0.05≲ z ≲0.2; starbursting galaxies are a small fraction (∼6 per cent), and are very nearby ( z ≲0.05). Some 9 per cent of the population have Seyfert 1/quasar-type spectra, all at z ≳0.8, and 4 per cent are Seyfert 2 type galaxies at intermediate redshifts ( z ∼0.2).
Using our measurements and data from the Phoenix survey (Hopkins et al.), we obtain an estimate for N ( z ) at S 1.4 GHz≥1 mJy and compare this with model predictions. At variance with previous conclusions, we find that the population of starbursting objects makes up ≲5 per cent of the radio population at S ∼1 mJy.  相似文献   

12.
We present results from a multiwavelength study of 29 sources (false detection probabilities <5 per cent) from a survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field at 1.1 mm using the Astronomical Thermal Emission Camera (AzTEC). Comparing with existing 850 μm Submillimetre Common-User Bolometer Array (SCUBA) studies in the field, we examine differences in the source populations selected at the two wavelengths. The AzTEC observations uniformly cover the entire survey field to a 1σ depth of ∼1 mJy. Searching deep 1.4 GHz Very Large Array (VLA) and Spitzer 3–24 μm catalogues, we identify robust counterparts for 21 1.1 mm sources, and tentative associations for the remaining objects. The redshift distribution of AzTEC sources is inferred from available spectroscopic and photometric redshifts. We find a median redshift of   z = 2.7  , somewhat higher than   z = 2.0  for  850 μm  selected sources in the same field, and our lowest redshift identification lies at a spectroscopic redshift   z = 1.1460  . We measure the 850 μm to 1.1 mm colour of our sources and do not find evidence for '850 μm dropouts', which can be explained by the low signal-to-noise ratio of the observations. We also combine these observed colours with spectroscopic redshifts to derive the range of dust temperatures T , and dust emissivity indices β for the sample, concluding that existing estimates   T ∼ 30 K  and  β∼ 1.75  are consistent with these new data.  相似文献   

13.
A submillimetre survey of the star formation history of radio galaxies   总被引:1,自引:0,他引:1  
We present the results of the first major systematic submillimetre survey of radio galaxies spanning the redshift range 1< z <5. The primary aim of this work is to elucidate the star formation history of this sub class of elliptical galaxies by tracing the cosmological evolution of dust mass. Using SCUBA on the JCMT, we have obtained 850-μm photometry of 47 radio galaxies to a consistent rms depth of 1 mJy, and have detected dust emission in 14 cases. The radio galaxy targets have been selected from a series of low-frequency radio surveys of increasing depth (3CRR, 6CE, etc.), in order to allow us to separate the effects of increasing redshift and increasing radio power on submillimetre luminosity. Although the dynamic range of our study is inevitably small, we find clear evidence that the typical submillimetre luminosity (and hence dust mass) of a powerful radio galaxy is a strongly increasing function of redshift; the detection rate rises from ≃15 per cent at z <2.5 to ≳75 per cent at z >2.5, and the average submillimetre luminosity rises at a rate ∝(1+ z )3 out to z ≃4. Moreover, our extensive sample allows us to argue that this behaviour is not driven by underlying correlations with other radio galaxy properties such as radio power, radio spectral index, or radio source size/age. Although radio selection may introduce other more subtle biases, the redshift distribution of our detected objects is in fact consistent with the most recent estimates of the redshift distribution of comparably bright submillimetre sources discovered in blank field surveys. The evolution of submillimetre luminosity found here for radio galaxies may thus be representative of massive ellipticals in general.  相似文献   

14.
We use the 6C** sample to investigate the comoving space density of powerful, steep-spectrum radio sources. This sample, consisting of 68 objects, has virtually complete K -band photometry and spectroscopic redshifts for 32 per cent of the sources. In order to find its complete redshift distribution, we develop a method of redshift estimation based on the K – z diagram of the 3CRR, 6CE, 6C* and 7CRS radio galaxies. Based on this method, we derive redshift probability density functions for all the optically identified sources in the 6C** sample. Using a combination of spectroscopic and estimated redshifts, we select the most radio luminous sources in the sample. Their redshift distribution is then compared with the predictions of the radio luminosity function of Jarvis et al. We find that, within the uncertainties associated with the estimation method, the data are consistent with a constant comoving space density of steep-spectrum radio sources beyond z ≳ 2.5, and rule out a steep decline.  相似文献   

15.
We present a statistical study of a very large sample of H  ii galaxies taken from the literature. We focus on the differences in several properties between galaxies that show the auroral line [O  iii ]λ4363 and those that do not present this feature in their spectra. It turns out that objects without this auroral line are more luminous, are more metal-rich and present a lower ionization degree. The underlying population is found to be much more important for objects without the [O  iii ]λ4363 line, and the effective temperature of the ionizing star clusters of galaxies not showing the auroral line is probably lower. We also study the subsample of H  ii galaxies whose properties most closely resemble the properties of the intermediate-redshift population of luminous compact blue galaxies (LCBGs). The objects from this subsample are more similar to the objects not showing the [O  iii ]λ4363 line. It might therefore be expected that the intermediate- redshift population of LCBGs is powered by very massive, yet somewhat aged, star clusters. The oxygen abundance of LCBGs would be greater than the average oxygen abundance of local H  ii galaxies.  相似文献   

16.
We use a high-resolution ΛCDM numerical simulation to calculate the mass function of dark matter haloes down to the scale of dwarf galaxies, back to a redshift of 15, in a  50 h −1 Mpc  volume containing 80 million particles. Our low-redshift results allow us to probe low-σ density fluctuations significantly beyond the range of previous cosmological simulations. The Sheth & Tormen mass function provides an excellent match to all of our data except for redshifts of 10 and higher, where it overpredicts halo numbers increasingly with redshift, reaching roughly 50 per cent for the  1010–1011 M  haloes sampled at redshift 15. Our results confirm previous findings that the simulated halo mass function can be described solely by the variance of the mass distribution, and thus has no explicit redshift dependence. We provide an empirical fit to our data that corrects for the overprediction of extremely rare objects by the Sheth & Tormen mass function. This overprediction has implications for studies that use the number densities of similarly rare objects as cosmological probes. For example, the number density of high-redshift  ( z ≃ 6) QSOs  , which are thought to be hosted by haloes at 5σ peaks in the fluctuation field, are likely to be overpredicted by at least a factor of 50 per cent. We test the sensitivity of our results to force accuracy, starting redshift and halo-finding algorithm.  相似文献   

17.
We present the optical identifications of a 95-μm ISOPHOT sample in the Lockman hole over an area of approximately half a deg2. The Rodighiero et al. catalogue includes 36 sources, making up a complete flux-limited sample for   S 95 μm≥ 100 mJy  . Reliable sources were detected, with decreasing but well-controlled completeness, down to   S 95 μm≃ 20 mJy  . We have combined mid-infrared (IR) and radio catalogues in this area to identify the potential optical counterparts of the far-IR sources. We found 14 radio and 13 15-μm associations, 10 of which have both associations. For the 11 sources with spectroscopic redshift, we have performed a spectrophotometric analysis of the observed spectral energy distributions (SEDs). Four of these 95-μm sources have been classified as faint IR (FIR) galaxies  ( L FIR < 1. e 11 L)  , six as luminous IR galaxies (LIRGs) and only one as an ultraluminous IR galaxy (ULIRG). We have discussed the redshift distribution of these objects, comparing our results with evolutionary model predictions 95 and 175 μm. Given their moderate distances (the bulk of the closest spectroscopically identified objects lying at   z < 0.2  ), their luminosities and star formation rates (SFR; median value  ∼ 10 M yr−1  ), the sources unveiled by ISOPHOT at 95 μm seem to correspond to the low redshift  ( z < 0.3)  FIRBACK 175-μm population, composed of dusty, star-forming galaxies with moderate SFRs. We computed and compared different SFR estimators, and found that the SF derived from the bolometric IR luminosity is well correlated with that computed from the radio and mid-IR fluxes.  相似文献   

18.
We present millimetre observations of a sample of 12 high-redshift ultraluminous infrared galaxies (ULIRGs) in the extended growth strip (EGS). These objects were initially selected on the basis of their observed mid-IR colours (  0.0 < [3.6]−[4.5] < 0.4  and  −0.7 < [3.6]−[8.0] < 0.5  ) to lie at high redshift  1.5 ≲ z ≲ 3  , and subsequent 20–38 μm mid-IR spectroscopy confirms that they lie in a narrow redshift window centred on   z ≈ 2  . We detect 9/12 of the objects in our sample at high significance  (>3σ)  with a mean 1200 μm flux of  〈 F 1200 μm〉= 1.6 ± 0.1  mJy. Our millimetre photometry, combined with existing far-IR photometry from the Far-IR Deep Extragalactic Legacy Survey (FIDELS) and accurate spectroscopic redshifts, places constraints both sides of the thermal dust peak. This allows us to estimate the dust properties, including the far-IR luminosity, dust temperature and dust mass. We find that our sample is similar to other high- z and intermediate- z ULIRGs, and local systems, but has a different dust selection function than submillimeter-selected galaxies. Finally, we use existing 20-cm radio continuum imaging to test the far-IR/radio correlation at high redshift. We find that our sample is consistent with the local relation, implying little evolution. Furthermore, this suggests that our sample selection method is efficient at identifying ultraluminous, starburst-dominated systems within a very narrow redshift range centred at   z ∼ 2  .  相似文献   

19.
We show that the far-IR properties of distant Luminous and UltraLuminous InfraRed Galaxies (LIRGs and ULIRGs, respectively) are on average divergent from analogous sources in the local Universe. Our analysis is based on Spitzer Multiband Imaging Photometer (MIPS) and Infrared Array Camera (IRAC) data of   L IR > 1010 L, 70 μm  selected objects in the  0.1 < z < 2  redshift range and supported by a comparison with the IRAS Bright Galaxy Sample. The majority of the objects in our sample are described by spectral energy distributions (SEDs) which peak at longer wavelengths than local sources of equivalent total infrared luminosity. This shift in SED peak wavelength implies a noticeable change in the dust and/or star-forming properties from   z ∼ 0  to the early Universe, tending towards lower dust temperatures, indicative of strong evolution in the cold dust, 'cirrus', component. We show that these objects are potentially the missing link between the well-studied local IR-luminous galaxies, Spitzer IR populations and SCUBA sources – the   z < 1  counterparts of the cold   z > 1  SubMillimetre Galaxies (SMGs) discovered in blank-field submillimetre surveys. The Herschel Space Observatory is well placed to fully characterize the nature of these objects, as its coverage extends over a major part of the far-IR/sub-mm SED for a wide redshift range.  相似文献   

20.
We investigate the evolution of the star formation rate in cluster galaxies. We complement data from the Canadian Network for Observational Cosmology 1 (CNOC1) cluster survey  (0.15 < z < 0.6)  with measurements from galaxy clusters in the Two-degree Field (2dF) galaxy redshift survey  (0.05 < z < 0.1)  and measurements from recently published work on higher-redshift clusters, up to almost   z = 1  . We focus our attention on galaxies in the cluster core, i.e. galaxies with   r < 0.7  h −170 Mpc  . Averaging over clusters in redshift bins, we find that the fraction of galaxies with strong [O  ii ] emission is ≲20 per cent in cluster cores, and the fraction evolves little with redshift. In contrast, field galaxies from the survey show a very strong increase over the same redshift range. It thus appears that the environment in the cores of rich clusters is hostile to star formation at all the redshifts studied. We compare this result with the evolution of the colours of galaxies in cluster cores, first reported by Butcher and Oemler. Using the same galaxies for our analysis of the [O  ii ] emission, we confirm that the fraction of blue galaxies, which are defined as galaxies 0.2 mag bluer in the rest-frame B – V than the red sequence of each cluster, increases strongly with redshift. Because the colours of galaxies retain a memory of their recent star formation history, while emission from the [O  ii ] line does not, we suggest that these two results can best be reconciled if the rate at which the clusters are being assembled is higher in the past, and the galaxies from which it is being assembled are typically bluer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号