首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Books Reviewed in this Article:
Seismic tomography and mantle circulation Eds O'Nions, R. K. & Parsons, B., Royal Society of London Special Publication , 1989, ISBN 0854 033823.  相似文献   

4.
5.
6.
7.
8.
Prange et al. (2007) question our reconstruction of the Sea of Galilee (Lake Kinneret) paleoclimate and argue that a “careful” analysis of the paleoclimatic analysis leads to much smaller cooling events than we have considered. By and large, their “careful” analysis is based on correlating the paleotemperatures of the Lake with those of the northern Red-Sea that (geographically) is much closer to the Lake than the two Mediterranean cores that we used. Ironically, their argument contradicts Friedman’s (2007) statements (the second comment on our original paper), which are based on still-closer cores and support our larger cooling choices. This issue alone would be enough to dismiss the uniqueness of PAL argument but there is another issue with their work that we wish to comment on. In support of their own small cooling argument, PAL present winter correlation maps that indeed show a stronger correlation of the northern Red-Sea SST to the lake SST than the correlation of Mediterranean SST with the lake SST. This seemingly correct correlation argument of PAL is totally false (for both daily and millennial time scales) because it has no climatological basis. On the daily time scale, all the storms that reach the Lake originate in the Mediterranean Sea (to the west of the lake), not the Red-Sea (which lies 700 km south of the lake). Also, although the lake and the Red-Sea are only 700 kilometers apart, their climates are very different because they are subject to two totally different air masses. While the climate of the Red-Sea region is desert-like, the climate of the region surrounding the lake is a typical wet Mediterranean climate. Seasonal correlation maps (and even monthly maps) such as those presented by the authors filter out the storms that control the winter climate in the lake region because these storms occur on a daily scale. With this filtering, all that one is left with is the low frequency first baroclinic mode, which merely reflects the Rossby radius scale (measured from the lake). On the millennial time scale, cold events in the lake regions (from an earlier period) have been attributed to Bond cycles and Heinrich events both of which are global and not local processes. As such, they are probably forced by variability in the solar radiation rather than a local process implied by PAL. Overall, all that the PAL correlation shows for both daily and millennial time scales is that changes in the temperature in the Red-Sea occur at the same time as they do in the Lake. But this does not say anything about the dynamics in question and does not imply that it is better to use records from the Red-Sea (which does not lie within the path of the zonal winds reaching the Lake). Neglecting this issue (as proposed by PAL) distorts the physics and reminds us of the classical statistical example for the limitations involved in the interpretation of correlation—the incidence of lung cancer is strongly correlated with the incidence of carrying matches in ones pocket even though the matches do not cause the cancer and the cancer does not force one to carry matches.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
We respond to the comments by Douglas regarding our earlier paper by emphasizing that our automated method was intended to distinguish between the primary and auxiliary fault planes in earthquake focal mechanisms and does not always produce reliable results for rupture velocity and rupture length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号