共查询到4条相似文献,搜索用时 0 毫秒
1.
Julie Fero Steven N. Carey John T. Merrill 《Journal of Volcanology and Geothermal Research》2009,186(1-2):120-132
PUFF and HAZMAP, two tephra dispersal models developed for volcanic hazard mitigation, are used to simulate the climatic 1991 eruption of Mt. Pinatubo. PUFF simulations indicate that the majority of ash was advected away from the source at the level of the tropopause (~ 17 km). Several eruptive pulses injected ash and SO2 gas to higher altitudes (~ 25 km), but these pulses represent only a small fraction (~ 1%) of the total erupted material released during the simulation. Comparison with TOMS images of the SO2 cloud after 71 and 93 h indicate that the SO2 gas originated at an altitude of ~ 25 km near the source and descended to an altitude of ~ 22 km as the cloud moved across the Indian Ocean. HAZMAP simulations indicate that the Pinatubo tephra fall deposit in the South China Sea was formed by an eruption cloud with the majority of the ash concentrated at a height of 16–18 km. Results of this study demonstrate that the largest concentration of distal ash was transported at a level significantly below the maximum eruption column height (~ 40 km) and at a level below the calculated height of neutral buoyancy (~ 25 km). Simulations showed that distal ash transport was dominated by atmospheric circulation patterns near the regional tropopause. In contrast, the movement of the SO2 cloud occurred at higher levels, along slightly different trajectories, and may have resulted from gas/particle segregations that took place during intrusion of the Pinatubo umbrella cloud as it moved away from source. 相似文献
2.
The last magmatic eruption of Soufrière of Guadeloupe dated at 1530 A.D. (Soufrière eruption) is characterized by an onset with a partial flank-collapse and emplacement of a debris-avalanche that was followed by a sub-plinian VEI 2–3 explosive short-lived eruption (Phase-1) with a column that reached a height between 9 and 12 km producing about 3.9 × 106 m3 DRE (16.3 × 106 m3 bulk) of juvenile products. The column recurrently collapsed generating scoriaceous pyroclastic flows in radiating valleys up to a distance of 5–6 km with a maximum interpolated bulk deposit volume of 11.7 × 106 m3 (5 × 106 m3 DRE). We have used HAZMAP, a numerical simple first-order model of tephra dispersal [Macedonio, G., Costa, A., Longo, A., 2005. A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31, 837–845] to reconstruct to a first approximation the potential dispersal of tephra and associated tephra mass loadings generated by the sub-plinian Phase 1 of the 1530 A.D. eruption. We have tested our model on a deterministic average dry season wind profile that best-fits the available data as well as on a set of randomly selected wind profiles over a 5 year interval that allows the elaboration of probabilistic maps for the exceedance of specific tephra mass load thresholds. Results show that in the hypothesis of a future 1530 A.D. scenario, populated areas to a distance of 3–4 km west–southwest of the vent could be subjected to a static load pressure between 2 and 10 kPa in case of wet tephra, susceptible to cause variable degrees of roof damage. Our results provide volcanological input parameters for scenario and event-tree definition, for assessing volcanic risks and evaluating their impact in case of a future sub-plinian eruption which could affect up to 70 000 people in southern Basse-Terre island and the region. They also provide a framework to aid decision-making concerning land management and development. A sub-plinian eruption is the most likely magmatic scenario in case of a future eruption of this volcano which has shown, since 1992, increasing signs of low-energy seismic, thermal, and acid degassing unrest without significant deformation. 相似文献
3.
Roberto Sulpizio Daniela Mele Pierfrancesco Dellino Luigi La Volpe 《Bulletin of Volcanology》2005,67(8):743-767
The combined use of field investigation and laboratory analyses allowed the detailed stratigraphic reconstruction of the Pollena eruption (472 AD) of Somma-Vesuvius. Three main eruptive phases were recognized, related either to changes in the eruptive processes and/or to relative changes of melt composition. The eruption shows a pulsating behavior with deposition of pyroclastic fall beds and generation of dilute and dense pyroclastic density currents (PDC). The eruptive mechanisms and transportation dynamics were reconstructed for the whole eruption. Column heights were between 12 and 20 km, corresponding to mass discharge rates (MDR) of 7×106 kg/s and 3.4×107 kg/s. Eruptive dynamics were driven by magmatic fragmentation of a phono-tephritic to tephri-phonolitic magma during Phases I and II, whereas phreatomagmatic fragmentation dominated Phase III. Magma composition varies between phonolitic and tephritic-phonolitic, with melt viscosity likely not in excess of 103 Pa s. The volume of the pyroclastic fall deposits, calculated by using of proximal isopachs, is 0.44 km3. This increases to 1.38 km3 if ash volumes are extrapolated on a log thickness vs. square root area diagram using one distal isopach and column height.Editorial responsibility: R Cioni 相似文献
4.
A. Di Muro M. Rosi E. Aguilera R. Barbieri G. Massa F. Mundula F. Pieri 《Journal of Volcanology and Geothermal Research》2008,174(4):307-324
Impact of large-scale explosive eruptions largely depends on the dynamics of transport, dispersal and deposition of ash by the convective system. In fully convective eruptive columns, ejected gases and particles emitted at the vent are vertically injected into the atmosphere by a narrow, buoyant column and then dispersed by atmosphere dynamics on a regional scale. In fully collapsing explosive eruptions, ash partly generated by secondary fragmentation is carried and dispersed by broad co-ignimbrite columns ascending above pyroclastic currents. In this paper, we investigate the transport and dispersion dynamics of ash and lapillis during a transitional plinian eruption in which both plinian and co-ignimbrite columns coexisted and interacted. The 800 BP eruptive cycle of Quilotoa volcano (Ecuador) produced a well-exposed tephra sequence. Our study shows that the sequence was accumulated by a variety of eruptive dynamics, ranging from early small phreatic explosions, to sustained magmatic plinian eruptions, to late phreatomagmatic explosive pulses. The eruptive style of the main 800 BP plinian eruption (U1) progressively evolved from an early fully convective column (plinian fall bed), to a late fully collapsing fountain (dense density currents) passing through an intermediate transitional eruptive phase (fall + syn-plinian dilute density currents). In the transitional U1 regime, height of the convective plinian column and volume and runout of the contemporaneous pyroclastic density currents generated by partial collapses were inversely correlated. The convective system originated from merging of co-plinian and co-surge contributions. This hybrid column dispersed a bimodal lapilli and ash-fall bed whose grain size markedly differs from that of classic fall deposits accumulated by fully convective plinian columns. Sedimentological analysis suggests that ash dispersion during transitional eruptions is affected by early aggregation of dry particle clusters. 相似文献