共查询到20条相似文献,搜索用时 15 毫秒
1.
Repeated measurement of tephra erosion near Mount St. Helens over a 30-year period at steel stakes, installed on 10 hillslopes in the months following the 1980 eruption, provides a unique long-term record of changing processes, controls and rates of erosion. Intensive monitoring in the first three post-eruption years showed erosion declined rapidly as processes shifted from sheetwash and rilling to rainsplash. To test predictions about changes to long-term rates and processes made based on the 3-year record, we remeasured sites in 1992, 2000 and 2010. Average annual erosion from 1983 to 1992 averaged 3.1 mm year−1 and ranged from 1.4 to 5.9 mm year−1, with the highest rate on moderately steep slopes. Stakes in rills in 1983 generally recorded deposition as the rills became rounded, filled and indistinct by 1992, indicating a continued shift in process dominance to rainsplash, frost action and bioturbation. Recovering plants, where present, also slowed erosion. However, in the second and third decades even unvegetated hillslopes ceased recording net measurable erosion; physical processes had stabilized surfaces from sheetwash and rill erosion in the first few years, and they appear to have later stabilized surfaces against rainsplash erosion in the following few decades. Comparison of erosion rates with suspended sediment flux indicates that within about 6 years post-eruption, suspended sediment yield from tephra-covered slopes was indistinguishable from that in forested basins. Thirty years after its deposition, on moderate and gentle hillslopes, most tephra remained; in well-vegetated areas, plant litter accumulated and soil developed, and where the surface remained barren, bioturbation and rainsplash redistributed and mixed tephra. These findings extend our understanding from shorter-term studies of the evolution of erosion processes on freshly created substrate, confirm earlier predictions about temporal changes to tephra erosion following eruptions, and provide insight into the conditions under which tephra layers are preserved. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd. 相似文献
2.
M. Alidibirov D. B. Dingwell R. J. Stevenson K.-U. Hess S. L. Webb J. Zinke 《Bulletin of Volcanology》1997,59(2):103-111
Physical properties of cryptodome and remelted samples of the Mount St. Helens grey dacite have been measured in the laboratory.
The viscosity of cryptodome dacite measured by parallel–plate viscometry ranges from 10.82 to 9.94 log10
η (Pa s) (T=900–982 °C), and shrinkage effects were dilatometrically observed at T>900 °C. The viscosity of remelted dacite samples measured by the micropenetration method is 10.60–9.25 log10
η (Pa s) (T=736–802 °C) and viscosities measured by rotational viscometry are 3.22–1.66 log10
η (Pa s) (T=1298–1594 °C). Comparison of the measured viscosity of cryptodome dacitic samples with the calculated viscosity of corresponding
water-bearing melt demonstrates significant deviations between measured and calculated values. This difference reflects a
combination of the effect of crystals and vesicles on the viscosity of dacite as well as the insufficient experimental basis
for the calculation of crystal-bearing vesicular melt viscosities at low temperature. Assuming that the cryptodome magma of
the 18 May 1980 Mount St. Helens eruption was residing at 900 °C with a phenocryst content of 30 vol.%, a vesicularity of
36 vol.% and a bulk water content of 0.6 wt.%, we estimate the magma viscosity to be 1010.8 Pa s.
Received: 25 August 1996 / Accepted: 19 July 1997 相似文献
3.
Multiple levels of magma storage during the 1980 summer eruptions of Mount St. Helens, WA 总被引:1,自引:0,他引:1
Transitions in eruptive style—explosive to effusive, sustained to pulsatory—are a common aspect of volcanic activity and present a major challenge to volcano monitoring efforts. A classic example of such transitions is provided by the activity of Mount St. Helens, WA, during 1980, where a climactic Plinian event on May 18 was followed by subplinian and vulcanian eruptions that became increasing pulsatory with time throughout the summer, finally progressing to episodic growth of a lava dome. Here we use variations in the textures, glass compositions and volatile contents of melt inclusions preserved in pyroclasts produced by the summer 1980 eruptions to determine conditions of magma ascent and storage that may have led to observed changes in eruptive activity. Five different pyroclast types identified in pyroclastic flow and fall deposits produced by eruptions in June 12, July 22 and August 7, 1980, provide evidence for multiple levels of magma storage prior to each event. Highly vesicular clasts have H2O-rich (4.5–5.5 wt%) melt inclusions and lack groundmass microlites or hornblende reaction rims, characteristics that require magma storage at P≥160 MPa until shortly prior to eruption. All other clast types have groundmass microlites; PH20 estimated from both H2O-bearing melt inclusions and textural constraints provided by decompression experiments suggest pre-eruptive storage pressures of ∼75, 40, and 10 MPa. The distribution of pyroclast types within and between eruptive deposits can be used to place important constraints on eruption mechanisms. Fall and flow deposits from June 12, 1980, lack highly vesicular, microlite-free pyroclasts. This eruption was also preceded by a shallow intrusion on June 3, as evidenced by a seismic crisis and enhanced SO2 emissions. Our constraints suggest that magma intruded to a depth of ≤4 km beneath the crater floor fed the June eruption. In contrast, eruptions of July and August, although shorter in duration and smaller in volume, erupted deep volatile-rich magma. If modeled as a simple cylinder, these data require a step-wise decrease in effective conduit diameter from 40–50 m in May and June to 8–12 m in July and August. The abundance of vesicular (intermediate to deep) clast types in July and August further suggests that this change was effected by narrowing the shallower part of the conduit, perhaps in response to solidification of intruded magma remaining in the shallow system after the June eruption. Eruptions from July to October were distinctly pulsatory, transitioning between subplinian and vulcanian in character. As originally suggested by Scandone and Malone (1985), a growing mismatch between the rate of magma ascent and magma disruption explains the increasingly pulsatory nature of the eruptions through time. Recent fragmentation experiments Spieler et al. (2004) suggest this mismatch may have been aided by the multiple levels at which magma was stored (and degassed) prior to these events.Editorial responsibility: J Stix 相似文献
4.
The explosion of a cryptodome at Mount St. Helens in 1980 produced two juvenile rock types that are derived from the same source magma. Their differences-color, texture and density-are due only to vesicularity differences. The vesicular gray dacite comprises bout 72% of the juvenile material; the black dacite comprises the other 28%. The density of juvenile dacite is bimodally distributed, with peaks at 1.6 g cm-3 (gray dacite) and 2.3 g cm-3 (black dacite). Water contents, deuterium abundances, and the relationship of petrographic structures to vapor-phase crystals indicate both rock types underwent pre-explosion subsurface vesiculation and degassing. The gray dacite underwent a second vesiculation event, probably during the 18 May explosion. In the subsurface, gases probably escaped through interconnected vesicles into the permeable volcanic edifice. We suggest that nonuniform degassing of an initially homogeneous magma produced volatile gradients in the cryptodome and that these gradients were responsible for the density bimodality. That is, water contents less than about 0.2–0.4 wt% produced vesicle growth rates that were slow in comparison to the pyroclast cooling rates; greater water contents produced vesicle growth rates that were fast in comparison to cooling rates. In this scheme, the dacite densities are bimodally distributed simply because, following decompression on 18 May 1980, one clast population vesiculated while the other did not. For clasts that did vesiculate, vesicle growth continued until it was arrested by fragmentation. 相似文献
5.
Fumarole discharges (95–560°C) collected from the dacite dome inside Mount St. Helens crater show temporal changes in their isotopic and chemical compositions. A δD vs. δ18O plot shows that condensed waters from the gases are mixtures of meteoric and magmatic components, but that the apparent magmatic end-member in 1994 was depleted by about 7‰ in δD relative to the apparent end-member in 1980. Based on δD modeling, approximately 63% of shallow, post-1980 magma has yet to degas. Surprisingly, Cl and F contents in the 1994 samples were only 0.47 and 3.8%, respectively, of the concentrations determined for end-member magmatic fluid in 1980. The data indicate that Cl (and F and B) is degassed from magma relatively quickly compared to water and/or that most of the Cl degassed in later years is dissolved into the shallow Mount St. Helens hydrothermal system. Because metals are often transported in magmatic and hydrothermal fluids as Cl complexes, rapid changes in surface volatile compositions may have implications for the timing and location of metals transport and deposition in some volcanoes. 相似文献
6.
Four co-ignimbrite plumes were generated along the flow path of the pyroclastic flow of 7 August 1980 at Mount St. Helens.
Three of the plumes were generated in discrete pulses which can be linked to changes in slope along the channel. One plume
was generated at the mouth of the channel where the flow decelerated markedly as it moved onto the lower slopes of the pumice
plain. Plume generation here may be triggered by enhanced mixing due to a hydraulic jump associated with an abrupt slope change.
Measurements of plume ascent velocity and width show that the co-ignimbrite plumes increased in velocity with height. The
plumes have initial velocities of 1–2 m/s. Two of the plumes reached a velocity maximum (4.6 and 8.8 m/s, respectively, at
heights of 270 and 315 m above the flow) and thereafter decelerated. The other plumes reached velocities of 6.2 and 13 m/s.
The four plumes become systematically less energetic downstream as measured by their ascent rates, which can be interpreted
as a consequence of decreasing interaction of the pyroclastic flow front with the atmosphere. Theoretical models of both co-ignimbrite
plumes and discrete co-ignimbrite clouds assume that there is no initial momentum, and both are able to predict the observed
acceleration stage. The rising plumes mix with and heat air and sediment out particles causing their buoyancy to increase.
Theoretical models agree well with observations and suggest that the initial motion of the ascending material is best described
as a discrete thermal cloud which expands as it entrains air, whereas the subsequent motion of the head may become influenced
by material supplied from the following plume. The models agree well with observations for an initial temperature of the ash
and air mixture in the range of 500–600 K, which is in turn consistent with the measured initial ash temperature of around
920 K. Ash masses of 3.4×105 to 1.8×106 kg are estimated.
Received: 11 January 1996 / Accepted: 7 October 1996 相似文献
7.
Geochemical studies on cold meteoric waters, post-1980 hot spring waters, fumarole emissions from the dacite dome, and volcanic rocks at Mount St. Helens (MSH) from 1985 to 1989 show that magmatic volatiles are involved in the formation of a new hydrothermal system. Hot spring waters are enriched in 18O by as much as 2 and display enrichments in D relative to cold waters. A well-defined isotopic trend is displayed by the isotopic composition of a>400°C fumarole condensate collected from the central crater in 1980 (-33 D, +6 18O), of condensate samples collected on the dome, and of cold meteoric and hot spring waters. The trend indicates that mixing occurs between local meteoric water and magmatic water degassing from the dacite dome. Between 30 and 70% magmatic water is present in the dome fumarole discharges and 10% magnatic water has been added to the waters of the hydrothermal system. Relations between Cl, SO4 and HCO3 indicate that the hot spring waters are immature volcanic waters formed by reaction of rocks with waters generated by absorption of acidic volcanic fluids. In addition, the B/Cl ratios of the spring waters are similar to the B/Cl ratios of the fumarole condensates (0.02), values of 13C in the HCO3 of the hot springs (-9.5 to-13.5) are similar to the magmatic value at MSH (-10.5), and the 3He/4He ratio, relative to air, in a hot spring water is 5.7, suggesting a magmatic origin for this component.managed by Martin Marietta Energy Systems, Inc., under contract DE-AC05-84OR21400 with the US Department of Energy 相似文献
8.
Hugh H. Mills 《地球表面变化过程与地形》1992,17(8):739-754
The crater of Mount St Helens shows one of the world's highest known rates of mass wasting. On many summer days, rockfall is almost continuous, and many large rock and dirty-snow avalanches have travelled several kilometres from their sources on the crater walls. Since formation of the crater on 18 May 1980, talus cones exceeding 100 m in thickness have formed at the base of the unstable 600 m high crater walls. To estimate rates of erosion and deposition, a series of digitized topographic maps made from aerial photographs taken of the crater in 1980, 1981, 1983, 1986 and 1988 were analysed using a geographic information system. Between 1980 and 1988, 30 × 106 m3 of rock were eroded from the crater wall, representing a mean retreat rate of 2.1 m yr?1. To account for the volume increase that occurs when bedrock is transformed into scree, this volume is multiplied by 4/3; this provides an estimate of the rock-debris volume supplied to the crater floor of 40 × 106 m3. The actual volume of deposits that accumulated during this 8 year period, however, is 68 × 106 m3. The difference of 28 × 106 m3 is presumably the volume of snow intercalated between insulating layers of rock debris. Similar calculations for each of four time intervals between 1980 and 1988 suggest that wall erosion and thus talus accumulation rates are declining, but that rates will probably remain high for decades to come. 相似文献
9.
In order to evaluate and further constrain models for volatile movement and vapor enrichment of magma stored at shallow levels, amphibole phenocrysts from 2004–2005 Mount St. Helens dacite were analyzed for major and selected trace elements (Li, Cu, Zn, Mn, and REE) and Li isotopes. Several recent studies have examined fluid-mobile trace element abundances in phencryst phases and melt inclusions as a means of tracking volatile movement within subvolcanic magmatic systems, and high Li contents in plagioclase phenocrysts from 1980 and 2004 Mount St. Helens dacites have been interpreted as evidence that shallow magma was fluxed by a Li-bearing vapor phase prior to eruption. 相似文献
10.
Following its plinian eruption on 18 May 1980, Mount St Helens (Washington State, USA) entered a period of intermittent lava-dome
extrusion until 1986. Renewed extrusion was frequently preceded by accelerating rates of seismicity, with more precursory
seismicity observed prior to eruptions later in the sequence. Here the failure forecasting method (FFM) is used to investigate
changes in the observed rate of volcano–tectonic (VT) seismicity. The analysis indicates that: (1) all VT crises resulted
in an eruption within 3 weeks (usually less than 10 days), (2) the majority of eruptions had VT precursors, and (3) patterns
of precursory seismicity showed fluctuations about the ideal model trend. Thus, although these seismic events could be used
to warn of an impending eruption, specific forecasts were subject to an uncertainty of weeks or more. It is proposed that:
(1) increased seismicity prior to later eruptions is a result of a larger and more solidified dome acting as a greater impediment
to magma ascent; (2) the consistency of seismic swarms resulting in an eruption indicates that stresses high enough to initiate
fracturing in the country rock and lava dome carapace were only achieved once the approach to an eruption had already begun;
and (3) discrepancies between models of accelerating rock fracture and the observed seismicity may arise due to a significant
amount of the rocks deforming through ductile mechanisms rather than seismogenic fracture. 相似文献
11.
Applying geomorphological principles and engineering science to develop a phased Sediment Management Plan for Mount St Helens,Washington 下载免费PDF全文
Thirty‐seven years post‐eruption, erosion of the debris avalanche at Mount St Helens continues to supply sediment to the Toutle–Cowlitz River system in quantities that have the potential to lower the Level of Protection (LoP) against flooding unacceptably, making this one of the most protracted gravel‐bed river disasters to date. The Portland District, US Army Corps of Engineers (USACE) recently revised its long‐term plan for sediment management (originally published in 1985), in order to maintain the LoP above the Congressionally‐authorized level, while reducing impacts on fish currently listed under the Endangered Species Act, and minimizing the overall cost of managing sediment derived from erosion at Mount St Helens. In revising the plan, the USACE drew on evidence gained from sediment monitoring, modelling and uncertainty analysis, coupled with assessment of future LoP trends under a baseline scenario (continuation of the 1985 sediment management strategy) and feasible alternatives. They applied geomorphological principles and used engineering science to develop a phased Sediment Management Plan that allows for uncertainty concerning future sediment yields by implementing sediment management actions only as, and when, necessary. The phased plan makes best use of the potential to enhance the sediment trap efficiency and storage capacity of the existing Sediment Retention Structure (SRS) by incrementally raising its spillway and using novel hydraulic structures to build islands in the North Fork Toutle River (NFTR) and steepen the gradient of the sediment plain upstream of the structure. Dredging is held in reserve, to be performed only when necessary to react to unexpectedly high sedimentation events or when the utility of other measures has been expended. The engineering‐geomorphic principles and many of the measures in the phased Sediment Management Plan are transferrable to other gravel‐bed river disasters. The overriding message is that monitoring and adaptive management are crucial components of long‐term sediment‐disaster management, especially in volcanic landscapes where future sediment yields are characterized by uncertainty and natural variability. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. 相似文献
12.
The cataclysmic 1980 eruption of Mount St Helens radically reduced the infiltration characteristics of ∼60 000 ha of rugged terrain and dramatically altered landscape hydrology. Two decades of erosional, biogenic, cryogenic, and anthropogenic activity have modified the infiltration characteristics of much of that devastated landscape and modulated the hydrological impact of the eruption. We assessed infiltration and runoff characteristics of a segment of hillslope thickly mantled with tephra, but now revegetated primarily with grasses and other plants, to evaluate hydrological modifications due to erosion and natural turbation. Eruptive disturbance reduced infiltration capacity of the hillslope by as much as 50‐fold. Between 1980 and 2000, apparent infiltration capacities of plots on the hillslope increased as much as ten fold, but remain approximately three to five times less than the probable pre‐eruption capacities. Common regional rainfall intensities and snowmelt rates presently produce little surface runoff; however, high‐magnitude, low‐frequency storms and unusually rapid snowmelt can still induce broad infiltration‐excess overland flow. After 20 years, erosion and natural mechanical turbation have modulated, but not effaced, the hydrological perturbation caused by the cataclysmic eruption. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
13.
Experimental constraints on pre-eruptive water contents and changing magma storage prior to explosive eruptions of Mount St Helens volcano 总被引:2,自引:0,他引:2
Compositionally diverse dacitic magmas have erupted from Mount St Helens over the last 4000 years. Phase assemblages and their compositions in these dacites provide information about the composition of the pre-eruptive melt, the phases in equilibrium with that melt and the magmatic temperature. From this information pre-eruptive pressures and water fugacities of many of the dacites have been inferred. This was done by conducting hydrothermal experiments at 850°C and a range of pressures and water fugacities and combining the results with those from experiments at temperatures of 780 and 920°C, to cover the likely range in equilibration conditions of the dacites. Natural phase assemblages and compositions were compared with the experimental results to infer the most likely conditions for the magmas prior to eruption. Water contents disolved in the melts of the dacites were then estimated from the inferred conditions. Water contents in the dacites have varied greatly, from 3.7 to 6.5 wt.%, in the last 4000 years. Between 4000 and about 3000 years ago the dacites tended to be water saturated and contained 5.5 to 6.5 wt.% water. Since then, however, the dacites have been significantly water-undersaturated and contained less than 5.0 wt.% water. These dacites have tended to be hotter and more mafic, and andesitic and basaltic magmas have erupted. These changes can be explained by variable amounts of mixing between felsic dacite and basalt, to produce hotter, drier and more mafic dacites and andesites. The magma storage region of the dacitic magmas has also varied significantly during the 4000 years, with shifts to shallower levels in the crust occurring within very short time periods, possibly even two years. These shifts may be related to fracturing of overlying roof rock as a result of magma with-drawal during larger volume eruptions. 相似文献
14.
Julie Fero Steven N. Carey John T. Merrill 《Journal of Volcanology and Geothermal Research》2009,186(1-2):120-132
PUFF and HAZMAP, two tephra dispersal models developed for volcanic hazard mitigation, are used to simulate the climatic 1991 eruption of Mt. Pinatubo. PUFF simulations indicate that the majority of ash was advected away from the source at the level of the tropopause (~ 17 km). Several eruptive pulses injected ash and SO2 gas to higher altitudes (~ 25 km), but these pulses represent only a small fraction (~ 1%) of the total erupted material released during the simulation. Comparison with TOMS images of the SO2 cloud after 71 and 93 h indicate that the SO2 gas originated at an altitude of ~ 25 km near the source and descended to an altitude of ~ 22 km as the cloud moved across the Indian Ocean. HAZMAP simulations indicate that the Pinatubo tephra fall deposit in the South China Sea was formed by an eruption cloud with the majority of the ash concentrated at a height of 16–18 km. Results of this study demonstrate that the largest concentration of distal ash was transported at a level significantly below the maximum eruption column height (~ 40 km) and at a level below the calculated height of neutral buoyancy (~ 25 km). Simulations showed that distal ash transport was dominated by atmospheric circulation patterns near the regional tropopause. In contrast, the movement of the SO2 cloud occurred at higher levels, along slightly different trajectories, and may have resulted from gas/particle segregations that took place during intrusion of the Pinatubo umbrella cloud as it moved away from source. 相似文献
15.
The results from two different types of gas measurement, telemetered in situ monitoring of reducing gases on the dome and airborne measurements of sulfur dioxide emission rates in the plume by correlation spectrometry, suggest that the combination of these two methods is particularly effective in detecting periods of enhanced degassing that intermittently punctuate the normal background leakage of gaseous effluent from Mount St Helens to the atmosphere. Gas events were recorded before lava extrusion for each of the four dome-building episodes at Mount St Helens since mid-1984. For two of the episodes, precursory reducing gas peaks were detected, whereas during three of the episodes, COSPEC measurements recorded precursory degassing of sulfur dioxide. During one episode (October 1986), both reducing gas monitoring and SO2 emission rate measurements simultaneously detected a large gas release several hours before lava extrusion. Had both types of gas measurements been operational during each of the dome-building episodes, it is thought that both would have recorded precursory signals for all four episodes. Evidence from the data presented herein suggests that increased degassing at Mount St Helens becomes detectable when fresh upward-moving magma is between 2 km and a few hundred meters below the base of the dome and between about 60 and 12 hours before the surface extrusion of lava. 相似文献
16.
Variations in column height and magma discharge during the May 18, 1980 eruption of Mount St. Helens
S. Carey H. Sigurdsson J.E. Gardner W. Criswell 《Journal of Volcanology and Geothermal Research》1990,43(1-4)
Peak eruption column heights for the B1, B2, B3 and B4 units of the May 18, 1980 fall deposit from Mount St. Helens have been determined from pumice and lithic clast sizes and models of tephra dispersal. Column heights determined from the fall deposit agree well with those determined by radar measurements. B1 and B2 units were derived from plinian activity between 0900 and about 1215 hrs. B3 was formed by fallout of tephra from plumes that rose off pyroclastic flows from about 1215 to 1630 hrs. A brief return to plinian activity between 1630 and 1715 hrs was marked by a maximum in column height (19 km) during deposition of B4.Variations in magma discharge during the eruption have been reconstructed from modelling of column height during plinian discharge and mass-balance calculations based on the volume of pyroclastic flows and coignimbrite ash. Peak magma discharge occurred during the period 1215–1630 hrs, when pyroclastic flows were generated by collapse of low fountains through the crater breach. Pyroclastic flow deposits and the widely dispersed co-ignimbrite ash account for 77% of the total erupted mass, with only 23% derived from plinian discharge.A shift in eruptive style at noon on May 18 may have been associated with increase in magma discharge and the eruption of silicic andesite mingled with the dominant mafic dacite. Increasing abundance of the silicic andesite during the period of highest magma discharge is consistent with the draw-up and tapping of deeper levels in the magma reservoir, as predicted by theoretical models of magma withdrawal. Return to plinian activity late in the afternoon, when magma discharge decreased, is consistent with theoretical predictions of eruption column behavior. The dominant generation of pyroclastic flows during the May 18 eruption can be attributed to the low bulk volatile content of the magma and the increasing magma discharge that resulted in the transition from a stable, convective eruption column to a collapsing one. 相似文献
17.
Leaching of freshly erupted air-fall ash, unaffected by rain, from the May 18, 1980, eruption of Mount St. Helens volcano, Washington, shows that Ca2+, Na+, Mg2+, SO 4 2? , and Cl? are the predominant chemical species released on first exposure of the ash to water. Extremely high correlation of Ca with SO4 and Na with Cl in water leachates suggests the presence of CaSO4 and NaCl salts on the ash. The amount of water soluble material on ash increases with distance from source and with the weight fraction of small (less than 63 micrometers) ash particles of high-surface area. This suggests that surface reactions such as adsorption are responsible for concentrating the soluble material. CaSO4, NaCl, and other salts are probably formed as microscopic crystals in the high-temperature core of the eruption column and are then adsorbed by silicate ash particles. The environmentally important elements Zn, Cu, Cd, F. Pb, and Ba are released by a water leach in concentrations which could pose short-term hazards to some forms of aquatic life. However, calculated concentrations are based on a water-to-ash ratio of 4:1 or less, which is probably an underestimation of the regionally operative ratio. A subsequent leach of ash by warm alkaline solution shows dramatic increases, in the amount of dissolved SiO2, U, and V, which are probably caused by increased dissolution of the glassy component of ash. Glass dissolution by alkaline ground water is a mechanism for providing these three elements to sedimentary traps where they may coaccumulate as uraniferous silica or U-V minerals. Leaching characteristics of ash from Mount St. Helens are comparable to characteristics of ash of similar composition from volcanoes in Guatemala. Ashes from each locality show similar ions predominating for a given leachate and similar fractions of a particular element in the ash removed on contact with the leach solution. 相似文献
18.
R.Stephen J. Sparks James G. Moore Carl J. Rice 《Journal of Volcanology and Geothermal Research》1986,28(3-4)
The initial eruption column of May 18th, 1980 reached nearly 30 km altitude and released 1017 joules of thermal energy into the atmosphere in only a few minutes. Ascent of the cloud resulted in forced intrusion of a giant umbrella-shaped cloud between altitudes of 10 and 20 km at radial horizontal velocities initially in excess of 50 m/s. The mushroom cloud expanded 15 km upwind, forming a stagnation point where the radial expansion velocity and wind velocity were equal. The cloud was initiated when the pyroclastic blast flow became buoyant. The flow reduced its density as it moved away from the volcano by decompression, by sedimentation, and by mixing with and heating the surrounding air. Observations indicate that much of the flow, covering an area of 600 km2, became buoyant within 1.5 minutes and abruptly ascended to form the giant cloud. Calculations are presented for the amount of air that must have been entrained into the flow to make it buoyant. Assuming an initial temperature of 450°C and a magmatic origin for the explosion, these calculations indicate that the flow became buoyant when its temperature was approximately 150°C and the flow consisted of a mixture of 3.25 × 1011 kg of pyroclasts and 5.0 × 1011 kg of air. If sedimentation is considered, these figures reduce to 1.1 × 1011 kg of pyroclasts and 1.0 × 1011 kg of air. 相似文献
19.
We compare eruptive dynamics, effects and deposits of the Bezymianny 1956 (BZ), Mount St Helens 1980 (MSH), and Soufrière
Hills volcano, Montserrat 1997 (SHV) eruptions, the key events of which included powerful directed blasts. Each blast subsequently
generated a high-energy stratified pyroclastic density current (PDC) with a high speed at onset. The blasts were triggered
by rapid unloading of an extruding or intruding shallow magma body (lava dome and/or cryptodome) of andesitic or dacitic composition.
The unloading was caused by sector failures of the volcanic edifices, with respective volumes for BZ, MSH, and SHV c. 0.5,
2.5, and 0.05 km3. The blasts devastated approximately elliptical areas, axial directions of which coincided with the directions of sector
failures. We separate the transient directed blast phenomenon into three main parts, the burst phase, the collapse phase,
and the PDC phase. In the burst phase the pressurized mixture is driven by initial kinetic energy and expands rapidly into
the atmosphere, with much of the expansion having an initially lateral component. The erupted material fails to mix with sufficient
air to form a buoyant column, but in the collapse phase, falls beyond the source as an inclined fountain, and thereafter generates
a PDC moving parallel to the ground surface. It is possible for the burst phase to comprise an overpressured jet, which requires
injection of momentum from an orifice; however some exploding sources may have different geometry and a jet is not necessarily
formed. A major unresolved question is whether the preponderance of strong damage observed in the volcanic blasts should be
attributed to shock waves within an overpressured jet, or alternatively to dynamic pressures and shocks within the energetic
collapse and PDC phases. Internal shock structures related to unsteady flow and compressibility effects can occur in each
phase. We withhold judgment about published shock models as a primary explanation for the damage sustained at MSH until modern
3D numerical modeling is accomplished, but argue that much of the damage observed in directed blasts can be reasonably interpreted
to have been caused by high dynamic pressures and clast impact loading by an inclined collapsing fountain and stratified PDC.
This view is reinforced by recent modeling cited for SHV. In distal and peripheral regions, solids concentration, maximum
particle size, current speed, and dynamic pressure are diminished, resulting in lesser damage and enhanced influence by local
topography on the PDC. Despite the different scales of the blasts (devastated areas were respectively 500, 600, and >10 km2 for BZ, MSH, and SHV), and some complexity involving retrogressive slide blocks and clusters of explosions, their pyroclastic
deposits demonstrate strong similarity. Juvenile material composes >50% of the deposits, implying for the blasts a dominantly
magmatic mechanism although hydrothermal explosions also occurred. The character of the magma fragmented by explosions (highly
viscous, phenocryst-rich, variable microlite content) determined the bimodal distributions of juvenile clast density and vesicularity.
Thickness of the deposits fluctuates in proximal areas but in general decreases with distance from the crater, and laterally
from the axial region. The proximal stratigraphy of the blast deposits comprises four layers named A, B, C, D from bottom
to top. Layer A is represented by very poorly sorted debris with admixtures of vegetation and soil, with a strongly erosive
ground contact; its appearance varies at different sites due to different ground conditions at the time of the blasts. The
layer reflects intense turbulent boundary shear between the basal part of the energetic head of the PDC and the substrate.
Layer B exhibits relatively well-sorted fines-depleted debris with some charred plant fragments; its deposition occurred by
rapid suspension sedimentation in rapidly waning, high-concentration conditions. Layer C is mainly a poorly sorted massive
layer enriched by fines with its uppermost part laminated, created by rapid sedimentation under moderate-concentration, weakly
tractive conditions, with the uppermost laminated part reflecting a dilute depositional regime with grain-by-grain traction
deposition. By analogy to laboratory experiments, mixing at the flow head of the PDC created a turbulent dilute wake above
the body of a gravity current, with layer B deposited by the flow body and layer C by the wake. The uppermost layer D of fines
and accretionary lapilli is an ash fallout deposit of the finest particles from the high-rising buoyant thermal plume derived
from the sediment-depleted pyroclastic density current. The strong similarity among these eruptions and their deposits suggests
that these cases represent similar source, transport and depositional phenomena. 相似文献
20.
Effects of forest land management on erosion and revegetation after the eruption of Mount St. Helens
The 1980 eruption of Mount St. Helens covered soils with a tephra blanket and killed the forest tree cover in a 550 km2 area. After the eruption, rates of sheetwash and rill erosion, and plant cover were measured on tephra-covered hillslopes which had been subject to three land-management practices: grass seeding; scarification, and salvage logging. On rapidly-eroding hillslopes subject to grass seeding, limited plant covers were established only after erosion had declined sharply. Logging of trees downed by the eruption and scarification of previously logged surfaces slowed erosion, although the effect was small because erosion rates had already slowed substantially by the time these two practices were implemented. The factors controlling erosion, revegetation, and their relative timing at Mount St. Helens are similar to those following explosive volcanic eruptions elsewhere, suggesting that grass seeding is not likely to be effective at slowing erosion following most tephra eruptions, and that early mechanical disturbance could be an effective erosion-control measure. The results also indicate that even without deliberate conservation measures, processes which mechanically disturb a surface layer of low hydraulic conductivity (such as frost-action or trampling) can radically reduce runoff and erosion before revegetation has an important effect. 相似文献