首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the results of four soil H2 surveys carried out in 2000–2003 at Poás volcano, Costa Rica, to investigate the soil H2 distribution and evaluate the diffuse H2 emission as a potential surveillance tool for Poás volcano. Soil gas H2 contents showed a wide range of concentration from 0.2 to 7,059 ppmV during the four surveys. Maps of soil gas H2 based on Sequential Gaussian Simulation showed low H2 concentration values in the soil atmosphere (<0.7 ppmV) for most of the study area, whereas high soil gas H2 values were observed inside the active crater of Poás. A significant increase in soil gas H2 concentration was observed inside the active crater during 2001 and 2002 with respect to year 2000, followed by a decrease in 2003. The observed spatial and temporal variations of soil H2 concentration have been well correlated with seismicity, microgravimetry and fumarolic chemistry changes which occurred during this study. These observations evidence changes in the shallow magmatic-hydrothermal system of Poás, and it might be related to a potential magmatic intrusion during the period 1998–2004. Therefore, monitoring diffuse H2 emission of Poás has become an important geochemical tool for the monitoring of its volcanic activity.  相似文献   

2.
45287 P-wave and 26813 S-wave arrival times from the data base of the Costa Rica network have been tomographically inverted to image the structure beneath Costa Rica. A regularized recursive least squares inverse method was used to produce the high resolution and minimum variance model parameter estimates. The first arrival times are calculated using a finite difference technique, which allows for flexible parameterization of the velocity model and easy inclusion of topography and source-receiver geometry. The P wave velocity structure and hypocenters are determined simultaneously, while the S wave velocity structure is determined using the relocated seismicity and an initial model derived from the P wave model assuming an average P to S wave velocity ratio of 1.78. The most prominent features in the inverted model are a low velocity structure under the volcanic chain in the center of the country, which is related to the hot material connected with the active volcanoes; and a high velocity zone in the mantle, which is related to the Cocos plate subducted under Costa Rica.  相似文献   

3.
The Active Crater at Rincón de la Vieja volcano, Costa Rica, reaches an elevation of 1750 m and contains a warm, hyper-acidic crater lake that probably formed soon after the eruption of the Rio Blanco tephra deposit approximately 3500 years before present. The Active Crater is buttressed by volcanic ridges and older craters on all sides except the north, which dips steeply toward the Caribbean coastal plains. Acidic, above-ambient-temperature streams are found along the Active Crater's north flank at elevations between 800 and 1000 m. A geochemical survey of thermal and non-thermal waters at Rincón de la Vieja was done in 1989 to determine whether hyper-acidic fluids are leaking from the Active Crater through the north flank, affecting the composition of north-flank streams.Results of the water-chemistry survey reveal that three distinct thermal waters are found on the flanks of Rincón de la Vieja volcano: acid chloride–sulfate (ACS), acid sulfate (AS), and neutral chloride (NC) waters. The most extreme ACS water was collected from the crater lake that fills the Active Crater. Chemical analyses of the lake water reveal a hyper-acidic (pH0) chloride–sulfate brine with elevated concentrations of calcium, magnesium, aluminum, iron, manganese, copper, zinc, fluorine, and boron. The composition of the brine reflects the combined effects of magmatic degassing from a shallow magma body beneath the Active Crater, dissolution of andesitic volcanic rock, and evaporative concentration of dissolved constituents at above-ambient temperatures. Similar cation and anion enrichments are found in the above-ambient-temperature streams draining the north flank of the Active Crater. The pH of north-flank thermal waters range from 3.6 to 4.1 and chloride:sulfate ratios (1.2–1.4) that are a factor of two greater than that of the lake brine (0.60). The waters have an ACS composition that is quite different from the AS and NC thermal waters that occur along the southern flank of Rincón de la Vieja.The distribution of thermal water types at Rincón de la Vieja strongly indicates that formation of the north-flank ACS waters is not due to mixing of shallow, steam-heated AS water with deep-seated NC water. More likely, hyper-acidic brines formed in the Active Crater area are migrating through permeable zones in the volcanic strata that make up the Active Crater's north flank. Dissolution and shallow subsurface alteration of north-flank volcanoclastic material by interaction with acidic lake brine, particularly in the more permeable tephra units, could weaken the already oversteepened north flank of the Active Crater. Sector collapse of the Active Crater, with or without a volcanic eruption, represents a potential threat to human lives, property, and ecosystems at Rincón de la Vieja volcano.  相似文献   

4.
We have relocated 1658 earthquakes whichoccurred in Costa Rica, and its vicinity. Theserelocated earthquakes were then used to investigatethe stress and orientation of fault planes within thestudy area. The analysis was made using the polaritiesof first motion P-waves. We found that the subductionzone for Costa Rica is mainly characterized by thrustfaulting, with some areas also exhibiting a componentof strike-slip motion. The intraplate Caribbeanseismicity in central Costa Rica shows a predominantshallow left-lateral strike-slip faulting. In southernCosta Rica, the subduction of very young oceaniclithosphere beneath the Caribbean plate (i.e. PanamaBlock), enhanced by the collision and subduction ofthe Cocos Ridge, has produced a highly compressivestress regime. This highly compressive regime ischaracterized by strike-slip faults oriented in aNE-SW direction, extending all the way from thePacific margin into the back-arc, connecting with theNorth Panama Deformed Belt.  相似文献   

5.
Monteverde, Costa Rica harbors montane forests that exemplify the delicate balances among climate, hydrology, habitat, and development. Most of the annual precipitation to this region arrives during the wet season, but the importance of orographic precipitation during the dry and transitional seasons should not be underestimated. Development associated with ecotourism has put significant stress on water resources, and recent work has shown evidence that changes in regional land-cover and global climate may lead to reduced precipitation and cloud cover and a subsequent decline in endemic species.  相似文献   

6.
Regional seismic apparent attenuation was estimated for Costa Rica, Central America, by using a time domain single scattering model of the shear wave coda decay of local earthquakes. The sensitivity of coda Q (Qc) measurements with respect to geological differences in the crust is demonstrated in eight sub-regions with a large variety of tectonic and geologic properties. The Qc estimations were performed for 96 selected local earthquakes recorded at 13 sites during a period of three months. In order to model the scattering as a weak process and to avoid short distance nonlinear effects, we made use of the S-wave coda data only from events within a hypocentral distance of 12 to 106 km with a lapse time between 9 and 53 s. Seismograms were also divided into groups with three different focal depths d, namely d<21 km, 21 kmc values are frequency dependent in the range 1–9 Hz, and are approximated by a least-squares fit to the power law Qc(f) = Q0(f/f0)n. The estimated parameters of the power-law dependence of Qc for the whole region, including all depths and possible wave paths, are Q0 = 91 (± 8.4) and n = 0.72 (±0.071). Differences in the parameter of Qc for different depths intervals are small, ranging from Q0 = 90 (±0.7) and n = 0.70 (±0.006) for the uppermost group, with focal depths less than 21 km, to Q0 = 97 (±0.7) and n = 0.79 (±0.005) for the deepest group with focal depths larger than 43 km. The regional differences in Qc for the eight sub-regions are significantly larger when compared with the differences between the three focal depth groups. An attempt is made to interpret the variation of Qc in terms of spatial variations in the geologic and tectonic properties of the crust. Other authors have found that the frequency exponent n might be larger in active tectonic areas and smaller in more stable regions. In the northern region of the Pacific coast we obtain a value of n = 0.52 (±0.011), which might indicate a lower level of tectonic activity when compared with n = 0.85 (±0.015) and 0.83 (±0.031), respectively, for the central and southern sub-regions along the Pacific coast. The latter two sub-regions are located closer to the active area near the Cocos ridge. We obtain the frequency exponent n = 0.72 (±0.052) along a major shear zone in central Costa Rica characterized by high volcanic activity and large geologic complexity. Values of n along the Panamean border are 0.62 (±0.029) in the north and 0.86 (±0.009) and 0.83 (±0.031) in two regions adjacent to the subduction zone and the Cocos Ridge, respectively.  相似文献   

7.
Archaeological investigations in Ecuador have proposed that there appear to be hiatus or anomalous jumps in the progressive development of pre-Columbian indigenous cultures, based upon the fact that their ceramics and tools demonstrate abrupt advances in their sophistication at several horizons in the soil profile. Because some of these horizons are clearly associated with volcanic ash layers, archaeologists have sought a causal relation with volcanism, that is, the eruptive events or their products severely interfered with the early inhabitants, resulting in their abandonment of certain areas.  相似文献   

8.
Site effects for 11 selected locations were determined in the capital city of Costa Rica. We used a strong motion network made of eight K2 and three SSA accelerographs. The network recorded more than 60 earthquakes in the magnitude range from 2 to 5 during a period of nine months. The site effects were determined using the sediment-to-bedrock spectral ratio (SBSR) and the horizontal-to-vertical spectral ratio (HVSR) techniques and a time window 4 s beginning from the S-wave arrival. The result suggests that the amplification in the capital city is to be in the range from 2.0 to 3.0. The fundamental frequencies were found to be high in the southern and eastern part of the study area and low in the northern and western part. A possible topographic effect was also observed for one of the stations located nearby a river canyon. The results from earthquake data were compared with the ones obtained from noise data. The horizontal-to-vertical noise ratio (HVNR) technique was used to estimate the site effects using ambient noise. The fundamental frequencies were found to correlate very well between both sets of data; on the other hand, the amplitude given by the noise was observed to be always lower than the one derived from the earthquake data.  相似文献   

9.
Abstract   Sediments deposited off the Nicoya Peninsula advect large volumes of water as they enter the Costa Rica subduction zone. Seismic reflection data, together with results from Ocean Drilling Program Leg 170, show that hemipelagic mud comprises the upper ∼135 m of the sediment column (ranging from 0 to 210 m). The lower ∼215 m of the sediment column (ranging from 0 to 470 m) is pelagic carbonate ooze. We analyzed samples from 60 shallow (<7 m) cores to characterize the spatial variability of sediment composition on the incoming Cocos Plate. The bulk hemipelagic sediment is 10 wt% opal and 60 wt% smectite on average, with no significant variations along strike; the pelagic chalk contains approximately 2 wt% opal and <1 wt% smectite. Initially, most of the water (96%) in the subducting sediment is stored in pore spaces, but the pore water is expelled during the early stages of subduction by compaction and tectonic consolidation. Approximately 3.6% of the sediment's total water volume enters the subduction zone as interlayer water in smectite; only 0.4% of the water is bound in opal. Once subducting strata reach depths greater than 6 km (more than 30 km inboard of the subduction front), porosity drops to less than 15%, and temperature rises to greater than 60°C. Under those conditions, discrete pulses of opal and smectite dehydration should create local compartments of fluid overpressure, which probably influence fluid flow patterns and reduce effective stress along the plate boundary fault.  相似文献   

10.
An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130–1131. Humid tropical regions are often characterized by extreme variability of fluvial processes. The Rio Terraba drains the largest river basin, covering 4767 km2, in Costa Rica. Mean annual rainfall is 3139±419sd mm and mean annual discharge is 2168±492sd mm (1971–88). Loss of forest cover, high rainfall erosivity and geomorphologic instability all have led to considerable degradation of soil and water resources at local to basin scales. Parametric and non‐parametric statistical methods were used to estimate sediment yields. In the Terraba basin, sediment yields per unit area increase from the headwaters to the basin mouth, and the trend is generally robust towards choice of methods (parametric and LOESS) used. This is in contrast to a general view that deposition typically exceeds sediment delivery with increase in basin size. The specific sediment yield increases from 112±11·4sd t km?2 year?1 (at 317·9 km2 on a major headwater tributary) to 404±141·7sd t km?2 year?1 (at 4766·7 km2) at the basin mouth (1971–92). The analyses of relationships between sediment yields and basin parameters for the Terraba sub‐basins and for a total of 29 basins all over Costa Rica indicate a strong land use effect related to intensive agriculture besides hydro‐climatology. The best explanation for the observed pattern in the Terraba basin is a combined spatial pattern of land use and rainfall erosivity. These were integrated in a soil erosion index that is related to the observed patterns of sediment yield. Estimated sediment delivery ratios increase with basin area. Intensive agriculture in lower‐lying alluvial fans exposed to highly erosive rainfall contributes a large part of the sediment load. The higher elevation regions, although steep in slope, largely remain under forest, pasture, or tree‐crops. High rainfall erosivity (>7400 MJ mm ha?1 h?1 year ?1) is associated with land uses that provide inadequate soil protection. It is also associated with steep, unstable slopes near the basin mouth. Improvements in land use and soil management in the lower‐lying regions exposed to highly erosive rainfall are recommended, and are especially important to basins in which sediment delivery ratio increases downstream with increasing basin area. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Sediment and coral skeleton samples from 23 coral reefs along the Caribbean coast of Costa Rica and Panama (1497 km) were evaluated for total mercury (Hg). High levels of pollution were found in the entire region with averages of 18.9 and 71.3 ppb in coral skeletons and sediments respectively. Significantly higher contamination was found in Panamanian corals (21.4 ppb) while compared to Costa Rican reef sediments (85.9 ppb). Hg from several processes and non-point sources (e.g., erosion, runoff, flooding, mining, overuse of agrochemicals, industrial waste, ports, and refineries) may have affected the entire region. The widespread observed distribution suggests that Hg is being carried along long distances within the region due to its high concentrations found in “pristine” reefs. Forest burning and colonial mining residues may be considered as possible contamination factors.  相似文献   

12.
13.
The Tiribí Tuff covered much of the Valle Central of Costa Rica, currently the most densely populated area in the country (∼2.4 million inhabitants). Underlying the tuff, there is a related well-sorted pumice deposit, the Tibás Pumice Layer. Based on macroscopic characteristics of the rocks, we distinguish two main facies in the Tiribí Tuff in correlation to the differences in welding, devitrification, grain size, and abundance of pumice and lithic fragments. The Valle Central facies consists of an ignimbritic plateau of non-welded to welded deposits within the Valle Central basin and the Orotina facies is a gray to light-bluish gray, densely to partially welded rock, with yellowish and black pumice fragments cropping out mainly at the Grande de Tárcoles River Gorge and Orotina plain. This high-aspect ratio ignimbrite (1:920 or 1.1×10−3) covered an area of at least 820 km2 with a long runout of 80 km and a minimum volume outflow of 25 km3 (15 km3 DRE). Geochemically, the tuff shows a wide range of compositions from basaltic-andesites to rhyolites, but trachyandesites are predominant. Replicate new 40Ar/39Ar age determinations indicate that widespread exposures of this tuff represent a single ignimbrite that was erupted 322±2 ka. The inferred source is the Barva Caldera, as interpreted from isopach and isopleth maps, contours of the ignimbrite top and geochemical correlation (∼10 km in diameter). The Tiribí Tuff caldera-forming eruption is interpreted as having evolved from a plinian eruption, during which the widespread basal pumice fall was deposited, followed by fountaining pyroclastic flows. In the SW part of the Valle Central, the ignimbrite flowed into a narrow canyon, which might have acted as a pseudo-barrier, reflecting the flow back towards the source and thus thickening the deposits that were filling the Valle Central depression. The variable welding patterns are interpreted to be a result of the lithostatic load and the influence of the content and size of lithic fragments.  相似文献   

14.
Faulting, shallow seismicity (0–30 km), and seismic hazard of the Costa Rican Central Valley were analyzed. Faults in the study area are oriented northwest or northeast. There is an active fault system in the south flank of the Central Volcanic Ridge and another in the north flank of the Talamanca Ridge. Faults of these systems have generated 15 destructive earthquakes in the area during the last 228 years all of them shallow and their locations show one cluster near the Poas Volcano and another southward the Central Valley. These earthquakes have damaged cities of the Central Valley, two of them destroyed Cartago city and almost 1000 people were killed. Regarding recent seismicity, there are three main seismic sources at the Central Volcanic Ridge: Irazu, Bajo de la Hondura and Poas and other three in the Talamanca Ridge: Puriscal, Los Santos and Pejibaye.A seismic hazard map for the Metropolitan Area of San José has been elaborated, based on local tectonic and seismic information. The area for the hazard computation covers an area of 20×15 km2 and includes the zone where the most population and socioeconomic activities are concentrated. The computation analysis are based on areas zones and faults, each one characterized by recurrence parameters, geometry, minimum and maximum magnitude and source depth. A recent local spectral attenuation model, which includes relations for shallow crustal sources and subduction zone earthquakes, has been applied in this study. The seismic hazard results are presented in terms of contour plots of estimated peak ground acceleration (PGA) for bedrock conditions for return period of 50, 100 and 500 years. In the Central Park of San Jose City the following PGA values were found: 0.29g for 50 years, 0.36g for 100 years, and 0.53g for 500 years.  相似文献   

15.
The Tibesti massif, one of the most prominent features of the Sahara desert, covers an area of some 100,000 km2. Though largely absent from scientific inquiry for several decades, it is one of the world’s major volcanic provinces, and a key example of continental hot spot volcanism. The intense activity of the TVP began as early as the Oligocene, though the major products that mark its surface date from Lower Miocene to Quaternary (Furon (Geology of Africa. Oliver & Boyd, Edinburgh (trans 1963, orig French 1960), pp 1–377, 1963)); Gourgaud and Vincent (J Volcanol Geotherm Res 129:261–290, 2004). We present here a new and consistent analysis of each of the main components of the Tibesti Volcanic Province (TVP), based on examination of multispectral imagery and digital elevation data acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Our synthesis of these individual surveys shows that the TVP is made up of several shield volcanoes (up to 80 km diameter) with large-scale calderas, extensive lava plateaux and flow fields, widespread tephra deposits, and a highly varied structural relief. We compare morphometric characteristics of the major TVP structures with other hot spot volcanoes (the Hawaiian Islands, the Galápagos Islands, the Canary and Cape Verdes archipelagos, Jebel Marra (western Sudan), and Martian volcanoes), and consider the implications of differing tectonic setting (continental versus oceanic), the thickness and velocity of the lithosphere, the relative sizes of main volcanic features (e.g. summit calderas, steep slopes at summit regions), and the extent and diversity of volcanic features. These comparisons reveal morphologic similarities between volcanism in the Tibesti, the Galápagos, and Western Sudan but also some distinct features of the TVP. Additionally, we find that a relatively haphazard spatial development of the TVP has occurred, with volcanism initially appearing in the Central TVP and subsequently migrating to both the Eastern and Western TVP regions. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

16.
A sudden eruption at Santa Ana occurred on 1 October 2005, producing an ash-and-gas plume to a height in excess of 10 km above the volcano. Several days before, thermal infrared images of the crater provided precursory signals of the eruption. A significant increase in the extent and intensity of the fumarolic field inside the crater rim and of the surface temperature of the crater’s lake was observed. Changes in energy input was also estimated to explain the increase in lake temperature based on energy/mass balance calculations.  相似文献   

17.
Santa Ana volcano in western El Salvador, Central America, had a phreatic eruption at 8:05 am (local time) on October 1, 2005, 101 years after its last eruption. However, during the last one hundred years this volcano has presented periods of quiet degassing with fumarolic activity and an acidic lake within its crater. This paper presents results of frequent measurements of SO2 degassing using the MiniDOAS (Differential Optical Absorption Spectroscopy) system and a comparison with the volcanic seismicity prior to the eruption, during, and after the eruption. Vehicle measurements of SO2 flux were taken every hour during the first nine days of the eruption and daily after that. The period of time reported here is from August to December, 2005. Three periods of degassing are distinguished: pre-eruptive, eruptive, and post-eruptive periods. The intense activity at Santa Ana volcano started in July 2005. During the pre-eruptive period up to 4306 and 5154 ton/day of SO2 flux were recorded on October 24 and September 9, 2005, respectively. These values were of the same order of magnitude as the recorded values just after the October 1st eruption (2925 ton/day at 10:01 am). Hourly measurements of SO2 flux taken during the first nine days after the main eruptive event indicate that explosions are preceded by an increase in SO2 flux and that this parameter reaches a peak after the explosion took place. This behavior suggests that increasing accumulation of exsolved magmatic gases occurs within the magmatic chamber before the explosions, increasing the pressure until the point of explosion. A correlation between SO2 fluxes and RSAM (Real Time Seismic Amplitude Measurements) is observed during the complete sampling period. Periodic fluctuations in the SO2 and RSAM values during the entire study period are observed. One possible mechanism explaining these fluctuations it that convective circulation within the magmatic chamber can bring fresh magma periodically to shallow levels, allowing increasing degasification and then decreasing degasification as the batch of magma lowers its gas content, becomes denser, and sinks to give space to a new magma pulse. These results illustrate that the measurements of SO2 flux can provide important warning signals for incoming explosive activity in active volcanoes.  相似文献   

18.
Multibeam bathymetry and bottom imaging (Simrad EM12D) studies on an area of about 9500 km2 were conducted over the Pitcairn hotspot near 25°10′S, 129° 20′W. In addition, 15 dives with the Nautile submersible enabled us to obtain ground-true observations and to sample volcanic structures on the ancient ocean crust of the Farallon Plate at 3500–4300 m depths. More than 100 submarine volcanoes overprint the ancient crust and are divided according to their size into large (>2000 m in height), intermediate (500–2000 m high) and small (<500 m high) edifices. The interpretation of seafloor backscatter imagery accompanied by submersible observations and sampling enabled us to infer that the total volume of submarine lava erupted during hotspot activity is about 5900 km3 within a radius of about 110 km. The most recent volcanic activities occur on both small and large edifices composed of a great variety of lava flows. These flows vary in composition, following a succession from picritic basalt to alkali basalt, trachybasalt, trachy-andesite and to trachyte. Their large range of SiO2 (48–62%), Na2O+K2O (2–11%), Ba (300–1300 ppm), MgO (1–11%), Nb (19–130 ppm), Ni (4–400 ppm) and rare earth elements suggests that crystal–liquid fractionation from basanite and/or picritic melt sources was a major process. The variation in composition between the least evolved basaltic rocks and the other more evolved silicic lava is marked by a difference in their flow morphology (pillow, giant tubes, tabular to blocky flows). The lava composition and field observation indicate that several magmatic pulses giving rise to cyclic eruptions are responsible for the construction of the edifices. The two larger edifices (>2000 m high) show more extensive eruptive events and a wider range in compositional variability than the smaller (<500 m high) ones. Several (five) submersible transects made along the slope of one of the largest edifices (Bounty) enabled us to observe at least nine successive eruptive cycles progressing from pillow and giant tubular basalt to tabular/blocky trachy-andesite and trachyte flows. Pyroclasts and hyaloclastites are often found with these eruptive sequences. The smaller edifices, forming individualized cones, are built mainly of evolved silicic (SiO2>53%) flows consisting essentially of alternating sequences of trachy-andesite and trachyte. The distribution and composition of the small edifices suggest that they are the result of sub-crustal forceful magma injection and channeling supplied from reservoirs associated with the large volcanoes.  相似文献   

19.
Mechanically, many volcanoes may be regarded as elastic inclusions, either softer (with a lower Young's modulus) or stiffer (with a higher Young's modulus) than the host-rock matrix. For example, many central volcanoes (stratovolcanoes, composite volcanoes) are composed of rocks that are softer than the crustal segments that host them. This is particularly clear in Iceland where central volcanoes are mostly made of soft rocks such as rhyolite, pyroclastics, hyaloclastites, and sediments whereas the host rock is primarily stiff basaltic lava flows. Most active central volcanoes also contain fluid magma chambers, and many have collapse calderas. Fluid magma chambers are best modelled as cavities (in three dimensions) or holes (in two dimensions), entire calderas as holes, and the ring faults themselves, which commonly include soft materials such as breccias, as soft inclusions. Many hyaloclastite (basaltic breccias) mountains partly buried in the basaltic lava pile also function as soft inclusions. Modelling volcanoes as soft inclusions or holes, we present three main numerical results. The first, using the hole model, shows the mechanical interaction between all the active central volcanoes in Iceland and, in particular, those forming the two main clusters at the north and south end of the East Volcanic Zone (EVZ). The strong indication of mechanical interaction through shared dykes and faults in the northern cluster of the EVZ is supported by observations. The second model, using a soft inclusion, shows that the Torfajökull central volcano, which contains the largest active caldera in Iceland, suppresses the spreading-generated tensile stress in its surroundings. We propose that this partly explains why the proper rift zone northeast of Torfajökull has not managed to propagate through the volcano. Apparently, Torfajökull tends to slow down the rate of southwest propagation of the rift-zone part of the EVZ. The third model, again using a soft inclusion, indicates how the lateral propagation of a segment of the 1783 Laki fissure became arrested in the slopes of the hyaloclastite mountain Laki.  相似文献   

20.
Abstract Arc volcanic activity on opposite sides of the Pacific Ocean (Japan and Central America) has been investigated by examining the number of volcanic ash layers recorded in Neogene and Quaternary deep-sea sediments. The data suggest that ash layers counted in deep-sea sediments may provide a reliable record of arc volcanism. The study is based on a quantitative analysis of arc volcanic activity using cores collected on DSDP (Deep-Sea Drilling Project) and ODP (Ocean Drilling Program) legs. Five distinct parameters which might affect ash distribution in marine sediments were reviewed: nature of the eruption, wind influence, settling conditions, diagenesis, and plate motion. Of these five, past atmospheric circulation was the most significant. The main constraint on the analysis is that temporal scattering of ash is not directly related to wind pattern variations. Results of this analysis are correlated with dating of terrestrial volcanic sequences. Although marine tephra records for individual regions reveal minor differences in the episodes of volcanic activity, a general correlation exists between activity of arc volcanism in Japan and in Central America. Two important pulses of arc volcanism occurred during Middle Miocene times (18–13 Ma) and Plio-Quaternary times (5–0 Ma). These episodes of intense volcanism are separated by a well recorded quiescent period during Late Miocene times. These correlating episodes of the volcanic record indicate a direct link between arc volcanism and the global tectonic evolution of the Pacific ocean margins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号