共查询到11条相似文献,搜索用时 15 毫秒
1.
Benjamin J. Andrews James E. GardnerTodd B. Housh 《Journal of Volcanology and Geothermal Research》2008
Compositional and isotopic zoning patterns in plagioclase and amphibole phenocrysts from El Chichón record multiple cycles of country rock assimilation, magma injection, hybridization, and mixing. Laser ablation ICP-MS and electron microprobe analyses of plagioclase crystals from 7 eruptions spanning 3100 years reveal four types of zoning. These compositional and isotopic zones are often associated with textural changes observed in the crystals in thin section (e.g. sieved or patchy regions). Amphiboles are frequently zoned in Al and Si, and, in two magmas, may have clinopyroxene rims. Interestingly, most plagioclase show multiple and repeated zoning patterns. Moreover, all magmas contain all zoning patterns and textures, and crystals with substantially different sequences of zones occur within mm of one another. The most reasonable explanation for the origin of these textures is a frequently recharged chamber. Plagioclase zones with increasing anorthite contents (An) and decreasing 87Sr/86Sr ratios record injection by a hotter, possibly wetter, and more primitive magma (lower 87Sr/86Sr ratio). Zones with decreasing An and increasing 87Sr/86Sr ratios record assimilation of country rock and/or hybridization of the host and injected magmas; injection of hot magma may provide the heat for country rock assimilation. Changes in An without corresponding changes in 87Sr/86Sr ratio likely record slight variations in pressure or temperature during crystallization, or the far-field thermal effects of magma injection. Variations in 87Sr/86Sr ratio unaccompanied by Anzoning record assimilation of country rock. Amphibole zoning patterns also record periodic heating events; amphibole with clinopyroxene rims record episodes where the magma was heated beyond the amphibole stability field. Bulk compositional homogeneity and the juxtaposition of many crystals with disparate zoning patterns in single pumice require the magmatic system to be well mixed. Strontium diffusion rates indicate that the plagioclase zoning patterns cannot have persisted at magmatic pressures and temperatures for more than ~ 500 years, thus cycles of injection and assimilation occur on timescales equal to or shorter than the eruption recurrence interval. Long-term compositional and isotopic homogeneity indicate that there is a balance between recharge, assimilation, and crystallization. 相似文献
2.
El Chichón volcano is an andesite stratovolcano in southern México. It erupted in March 1982, after about 550 years of quiescence. The 1982 eruption of El Chichón has not been followed by the growth of a lava dome within the newly formed crater. This is rather anomalous since the construction of a new dome after the destruction of an old one is a common process during the eruptions at andesite and dacite volcanoes. To discuss this anomalous aspect of the El Chichón eruption, some regularity in the process of re-awakening of dormant (here defined as a period of quiescence of more than 100 years) andesite and dacite volcanoes are studied based on the seismic activity recorded at the volcanoes Bezymianny, Mount St. Helens, El Chichón, Unzen, Pinatubo and Soufrière Hills. Three stages were identified in the re-awakening activity of these volcanoes: (1) preliminary seismic activity, leading up to the first phreatic explosion; (2) activity between the first and the largest explosions; (3) post-explosion dome-building process. The eruptions were divided into two groups: low-VEI (Volcanic Explosivity Index) and the long duration stage-1 events (Unzen, 1991 and Soufrière Hills volcano, 1995) and high-VEI and the short duration stage-1 events (Bezymianny, 1956; Mount St. Helens, 1980; El Chichón, 1982 and Pinatubo, 1992). The comparative analysis of the seismo-eruptive activity of two eruptions of the second group, the 1980 of Mt. St. Helens and the 1982 of El Chichón, produced an explanation the absence of new dome building during the 1982 eruption of El Chichón volcano. It may be explained in terms of the unusually rapid emission of gas and water from the magmatic and hydrothermal system beneath the volcano during a relatively short sequence of large explosions that could have sharply increased the viscosity of the magma making impossible its exit to the surface. 相似文献
3.
The origin of El Chichón volcano is poorly understood, and we attempt in this study to demonstrate that the Tehuantepec Ridge (TR), a major tectonic discontinuity on the Cocos plate, plays a key role in determining the location of the volcano by enhancing the slab dehydration budget beneath it. Using marine magnetic anomalies we show that the upper mantle beneath TR undergoes strong serpentinization, carrying significant amounts of water into subduction. Another key aspect of the magnetic anomaly over southern Mexico is a long-wavelength (∼ 150 km) high amplitude (∼ 500 nT) magnetic anomaly located between the trench and the coast. Using a 2D joint magnetic-gravity forward model, constrained by the subduction P–T structure, slab geometry and seismicity, we find a highly magnetic and low-density source located at 40–80 km depth that we interpret as a partially serpentinized mantle wedge formed by fluids expelled from the subducting Cocos plate. Using phase diagrams for sediments, basalt and peridotite, and the thermal structure of the subduction zone beneath El Chichón we find that ∼ 40% of sediments and basalt dehydrate at depths corresponding with the location of the serpentinized mantle wedge, whereas the serpentinized root beneath TR strongly dehydrates (∼90%) at depths of 180-200 km comparable with the slab depths beneath El Chichón (200-220 km). We conclude that this strong deserpentinization pulse of mantle lithosphere beneath TR at great depths is responsible for the unusual location, singularity and, probably, the geochemically distinct signature (adakitic-like) of El Chichón volcano. 相似文献
4.
Roberto Sulpizio Elena Zanella José Luis Macías 《Journal of Volcanology and Geothermal Research》2008
Thermal remanent magnetization (TRM) analyses were carried out on lithic fragments from two different typologies of pyroclastic density current (PDC) deposits of the 1982 eruption of El Chichón volcano, in order to estimate their equilibrium temperature (Tdep) after deposition. The estimated Tdep range is 360–400 °C, which overlaps the direct measurements of temperature carried out four days after the eruption on the PDC deposits. This overlap demonstrates the reliability of the TRM method to estimate the Tdep of pyroclastic deposits and to approximate their depositional temperature. These results also constraint the time needed for reaching thermal equilibrium within four days for the studied PDC deposits, in agreement with predictions of theoretical models. 相似文献
5.
J.L. Macías L. Capra J.L. Arce J.M. Espíndola A. García-Palomo M.F. Sheridan 《Journal of Volcanology and Geothermal Research》2008
El Chichón volcano consists of a 2-km wide Somma crater compound cone 0.2 Ma old with peripheral domes with a central crater reactivated several times during the Holocene. The most recent eruption at El Chichón occurred from March 28 to April 4, 1982, resulting in the worst volcanic disaster during historical times in Mexico, killing more than 2000 people and destroying nine towns and small communities. The volcanic hazard map of El Chichón is based on detailed field work that documented twelve eruptions during the last 8000 years, and computer simulations. To validate the results, computer simulations were first performed over pre-1982 topography mimicking the extent of the actual deposits produced and afterwards run over post-1982 topography. These eruptions have produced pyroclastic fall, surge, flow and lahar deposits. Pyroclastic flows have different volumes and Heim coefficients varying from 0.2 (pumice flows), to 0.15 (block-and-ash flows) and 0.10 (ash flows). Simulations using FLOW3D and TITAN2D indicate that pumice flows and block-and-ash flows can fill the moat area and follow main ravines up to distances of ca. 3 km from the crater, with no effect on populations around the volcano. On the other hand, more mobile ash flows related to column-collapse events can reach up to 4 km from the vent, but will always follow the same paths and still not affect surrounding populations. The energy-cone model was used to simulate the outflow of pyroclastic surges based on the 1982 event (H/L = 0.1 and 0.2), and shows that surges may reach some towns around the volcano. 相似文献
6.
Four groups of thermal springs with temperatures from 50 to 80 °C are located on the S–SW–W slopes of El Chichón volcano, a composite dome-tephra edifice, which exploded in 1982 with a 1 km wide, 160 m deep crater left. Very dynamic thermal activity inside the crater (variations in chemistry and migration of pools and fumaroles, drastic changes in the crater lake volume and chemistry) contrasts with the stable behavior of the flank hot springs during the time of observations (1974–2005). All known groups of hot springs are located on the contact of the basement and volcanic edifice, and only on the W–SW–S slopes of the volcano at almost same elevations 600–650 m asl and less than 3 km of direct distance from the crater. Three groups of near-neutral (pH ≈ 6) springs at SW–S slopes have the total thermal water outflow rate higher than 300 l/s and are similar in composition. The fourth and farthest group on the western slope discharges acidic (pH ≈ 2) saline (10 g/kg of Cl) water with a much lower outflow rate (< 10 l/s). 相似文献
7.
El Chichón crater lake appeared immediately after the 1982 catastrophic eruption in a newly formed, 1-km wide, explosive crater. During the first 2 years after the eruption the lake transformed from hot and ultra-acidic caused by dissolution of magmatic gases, to a warm and less acidic lake due to a rapid “magmatic-to-hydrothermal transition” — input of hydrothermal fluids and oxidation of H2S to sulfate. Chemical composition of the lake water and other thermal fluids discharging in the crater, stable isotope composition (δD and δ18O) of lake water, gas condensates and thermal waters collected in 1995–2006 were used for the mass-balance calculations (Cl, SO4 and isotopic composition) of the thermal flux from the crater floor. The calculated fluxes of thermal fluid by different mass-balance approaches become of the same order of magnitude as those derived from the energy-budget model if values of 1.9 and 2 mmol/mol are taken for the catchment coefficient and the average H2S concentration in the hydrothermal vapors, respectively. The total heat power from the crater is estimated to be between 35 and 60 MW and the CO2 flux is not higher than 150 t/day or ~ 200 gm− 2 day− 1. 相似文献
8.
F. Tassi O. Vaselli B. Capaccioni J. L. Macias A. Nencetti G. Montegrossi G. Magro 《Journal of Volcanology and Geothermal Research》2003,123(1-2):105
Since the March–April 1982 eruption of El Chichòn volcano, intense hydrothermal activity has characterised the 1-km-wide summit crater. This mainly consists of mud and boiling pools, fumaroles, which are mainly located in the northwestern bank of the crater lake. During the period 1998–2000, hot springs and fumaroles discharging inside the crater and from the southeastern outer flank (Agua Caliente) were collected for chemical analyses. The observed chemical fluctuations suggest that the physico-chemical boundary conditions regulating the thermodynamic equilibria of the deep rock/fluid interactions have changed with time. The chemical composition of the lake water, characterised in the period 1983–1997 by high Na+, Cl−, Ca2+ and SO42− contents, experienced a dramatic change in 1998–1999, turning from a Na+–Cl−- to a Ca2+–SO42−-rich composition. In June 2000, a relatively sharp increase in Na+ and Cl− contents was observed. At the same time, SO2/H2S ratios and H2 and CO contents in most gas discharges increased with respect to the previous two years of observations, suggesting either a new input of deep-seated fluids or local variations of the more surficial hydrothermal system. Migration of gas manifestations, enhanced number of emission spots and variations in both gas discharge flux and outlet temperatures of the main fluid manifestations were also recorded. The magmatic-hydrothermal system of El Chichòn is probably related to interaction processes between a deep magmatic source and a surficial cold aquifer; an important role may also be played by the interaction of the deep fluids with the volcanic rocks and the sedimentary (limestone and evaporites) basement. The chemical and physical changes recorded in 1998–2000 were possibly due to variations in the permeability of the conduit system feeding the fluid discharges at surface, as testified by the migration of gas and water emanations. Two different scenarios can be put forward for the volcanic evolution of El Chichòn: (1) build-up of an infra-crater dome that may imply a future eruption in terms of tens to hundreds of years; (2) minor phreatic–phreatomagmatic events whose prediction and timing is more difficult to constrain. This suggests that, unlike the diminished volcanic activity at El Chichòn after the 1982 paroxistic event, the volcano-hydrothermal fluid discharges need to be more constantly monitored with regular and more frequent geochemical sampling and, at the same time, a permanent network of seismic stations should be installed. 相似文献
9.
T. Scolamacchia J. L. Macías M. F. Sheridan S. R. Hughes 《Bulletin of Volcanology》2005,68(2):171-200
The detailed stratigraphic study of the pyroclastic surge units S1, IU, and S3 produced during the most violent phases of the 1982 eruption of El Chichón volcano, contains a complex succession of hydromagmatic events triggered by the interaction of different proportions of magma and external water. Component analyses of the horizons within single units reveal that almost all wet and cohesive horizons contain ash aggregates. Based on their morphology and internal structure four different types of aggregates were distinguished: (a) accretionary lapilli, (b) armored lapilli, (c) irregular aggregates, and (d) cylindrical aggregates. The first three types have been described in the volcanological literature (field and experimental studies); cylindrical forms are reported here for the first time. These hollow cylindrical aggregates consist of concentric layers of crystals and glass fragments set in a finer-grained matrix. They formed around millimeter-size foliage fragments that are locally preserved in the interior of the aggregates as scorched or completely carbonized vestiges. SEM analyses suggest different mechanisms of formation for the four types of aggregates. Irregular aggregates and armored lapilli formed nearly instantaneously, whereas accretionary lapilli and cylindrical aggregates resulted from progressive aggregation of ash in different regions of the eruptive cloud.All types of ash aggregates contain fractured particles. This common feature suggests that particles ruptured during fragmentation prior to the growth of the aggregates. Broken clasts with cracks filled by a fine-grained matrix only occur inside the cylindrical ash aggregates and to a lesser degree in some types of accretionary lapilli. This suggests that small thermal contrasts at the contact of warm particles with the colder fine-grained matrix of the aggregate cause existing small fractures to propagate and open as the already weakened clasts deform slightly. The occurrence of all four types of aggregates in some horizons indicates that several mechanisms of aggregation occurred nearly simultaneously. The pyroclastic clouds therefore were not only stratified in terms of density but the content of fluid phases also were not uniform. A dark-red, Fe-rich amorphous film (locally rich in P and S) envelops the particles and fosters their preservation in the deposits by forming a hard shell. The composition of this cement reflects the abundance of these elements in acid fluids of hydrothermal systems that were intersected by the conduit during the eruption. In distal areas, fallout aggregates were incorporated by dissipating pyroclastic surges. 相似文献
10.
Many efforts have been done in the modelling of Plinian columns. However, until now, the inverse problem of the reconstruction of a Plinian event from observed data has been only roughly tackled. This paper discusses the efficient variational data assimilation (VDA) that manages the optimization iterate sequence by means of gradient computations. Theoretical developments of VDA are presented for both the Woods equations and a generic system allowing for the modelling of the Navier–Stokes equations. Two- and three-dimensional unsteady Plinian models being based on the latters, VDA could be clearly performed on their differentiable subset of equations. 相似文献
11.
M. A. Armienta S. De la Cruz-Reyna J. L. Macías 《Journal of Volcanology and Geothermal Research》2000,97(1-4)
Three crater lakes from Mexican volcanoes were sampled and analyzed at various dates to determine their chemical characteristics. Strong differences were observed in the chemistry among the three lakes: Nevado de Toluca, considered as dormant, El Chichón at a post-eruptive stage, and Popocatépetl at a pre-eruptive stage. Not surprisingly, no influence of volcanic activity was found at the Nevado de Toluca volcano, while the other volcanoes showed a correlation between the changing level of activity and the evolution of chemical trends. Low pHs (<3.0) were measured in the water from the active volcanoes, while a pH of 5.6 was measured at the Nevado de Toluca Sun lake. Changes with time were observed at Popocatépetl and El Chichón. Concentrations of volcanic-gas derived species like Cl−, SO42− and F− decreased irregularly at El Chichón from 1983 until 1997. Major cations concentrations also diminished at El Chichón. A 100% increase in the SO42− content was measured at Popocatépetl between 1985 and 1994. An increase in the Mg/Cl ratio between 1992 (Mg/Cl=0.085) and 1994 (Mg/Cl=0.177) was observed at Popocatépetl, before the disappearance of the crater lake in 1994. It is concluded that chemical analysis of crater lakes may provide a useful additional tool for active-volcano monitoring. 相似文献