首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A constrained 3D density model of the upper crust along a part of the Deccan Syneclise is carried out based on the complete Bouguer anomaly data. Spectral analysis of the complete Bouguer gravity anomaly map of the study region suggests two major sources: short wavelength anomalies (<100 km) caused primarily due to the density inhomogeneities at shallow crustal level and long wavelength anomalies (>100 km) produced due to the sources deeper than the upper crust. A residual map of the short wavelength anomalies is prepared from the complete Bouguer anomaly using Butterworth high‐pass filter (100 km cut‐off wavelength). Utilizing the constraints from deep resistivity sounding, magnetotellurics and deep seismic sounding studies, 2.5D density models have been generated along 39 profiles of this region. The mismatch between the calculated response of the a priori 2.5D model with the residual (short wavelength) gravity anomalies is minimized by introducing high‐density intrusive bodies (≥2.81 g/cm3) in the basement. With these 2.5D density models, the initial geometry of our 3D density model, which includes alluvium, Deccan trap, Mesozoic sediment and high‐density intrusive bodies in the basement up to a depth of 7 km (upper crust), is generated. In the final 3D model, Deccan trap extends from 200 m to nearly 1700 m below the 90–150 m thick Quaternary sediment. Further down, the sub‐trappean Mesozoic sediment is present at a depth range of 600–3000 m followed by the basement. The derived 3D density model also indicates six intrusive bodies of density 2.83 g/cm3 in the basement at an average depth of about 4–7 km that best fits the residual gravity anomaly of the study area.  相似文献   

2.
Since 1960, many gravity studies have been carried out in the Yagoua region of northern Cameroon. Gravity data was collected over a wide area of approximately 11628 km2. These data are insufficient, irregular, scattered and do not efficiently permit gravity field downward and upward continuations, derivatives and other operations that might require regular gridded data. Some anomalies on the Collignon map (1968), may correlate with known geological structure but do not appear on maps by Louis (1970) and Poudjom et al. (1996). To produce regular gridded gravity data and better control anomalies due to geological structures, the kriging method was applied to a 188-data baseline. Several variogram models were tested for this purpose. It was found that a spherical variogram model is the best; it has produced a new kriging dataset of about 10,100 data and a new map of kriged Bouguer data. This map contains positive anomalies in the Maroua-Mindif and Maga areas on the Collignon (1968) map, which were not present on Louis (1970) and Poudjom et al. (1996) maps. The positive anomalies of Guibi-Doukoula and Yagoua, not separated on the Louis (1970) and Poudjom et al. (1996) maps, show up as clearly distinct as previewed by Collignon (1968). The new results can be used for subsequent gravimetric studies.  相似文献   

3.
A Bouguer gravity anomaly map is presented of the North Sea and adjacent land areas in Norway and Denmark, covering an area situated between 56° and 62°N, 1°W and 10°E. The gravity data from the UK sector of the North Sea, the land and offshore areas of Denmark, and the land areas of Norway have been published before. However, the gravity data from the Norwegian sector of the North Sea are new. A large number (about 60) of individual gravity features can be defined in the mapped area. Most of those situated in the UK sector of the North Sea and on land in Norway have been discussed earlier; however, most of the anomalies found elsewhere which are qualitatively interpreted here have not been discussed before. An interpreted Bouguer anomaly map is presented which identifies all these features. The majority of the gravity anomalies encountered in the mapped area can be shown to be associated with one of the following geological features: (i) basement highs, (ii) large bodies of heavy basic or ultrabasic rock in the crystalline basement, (iii) large igneous intrusions within the sedimentary column and thick accumulations of volcanic rocks or their associated eruption centers, (iv) major basement faults. Large-scale geological structures such as the Central, Viking and Sogn Grabens and the East Shetland, Stord, Forth Approaches and Norwegian-Danish Basins are essentially in isostatic equilibrium and are only locally marked by relatively weak gravity minima. A residual gravity anomaly map has been produced by subtracting from the observed Bouguer anomalies the estimated gravity effect of an assumed thinned crust. This residual gravity anomaly map shows a number of features of the Bouguer anomaly field with greater clarity.  相似文献   

4.
利用运城及周边地区的布格重力资料,对布格重力数据进行小波分解得到不同阶次的重力异常信息。依据各个阶次的小波变换结果并结合该区域的地质构造环境,对小波变换细节图中存在的特征较为明显的布格重力异常带进行深入分析,对异常所揭示的构造现象在地壳不同深度的分布特性等进行分析研究。结果表明:小波变换细节与区内地壳内部的隆起、凹陷及断裂构造具有很好的对应关系,可以对运城盆地的构造特征及地壳结构做更加深入的研究。  相似文献   

5.
Introduction The gravity anomaly is an indicator of the density distribution of the underground material. Therefore the gravity anomalies have been important data used for studying the deep crustal struc-ture for a long time. Many people have made detailed researches on the regional crustal structure inverted by Bouguer anomalies. In particular some empirical formulae and practical algorithms about the crustal thickness were brought forward, and a series of results were obtained (MENG, 1996)…  相似文献   

6.
Recently observed features in the subsurface geology of the Haifa Bay area (northern Israel) have been evaluated using 3-D forward gravity and magnetic modeling and inversion schemes. The interpretation is based on updated petrophysical data of the Jurassic, Cretaceous and Tertiary sedimentary layers and volcanics. It has been shown that the Bouguer gravity anomalies correspond mainly to thickness variations in the Senonian to Tertiary sediments. The gravity effect of these sediments was calculated using their actual densities and structural setting as interpreted from seismic reflection data. This effect was removed from the Bouguer gravity in order to study the pre-Senonian geological structures. The pattern of residual gravity anomalies (named “stripped gravity”) is essentially different from the pattern of the Bouguer gravity. The prominent Carmel gravity high, clearly seen on the Bouguer gravity map, completely vanishes on the “stripped” gravity map. That suggests that this relatively positive anomaly is caused by the considerable thickness of the low-density young sediments in the surrounding areas and does not correspond to high-density magmatic rocks or crystalline basement uplift as previously suggested. The average densities of the Jurassic and Cretaceous volcanics are generally lower then those of the background sedimentary rocks. Volcanics are the main cause for magnetic anomalies onshore and offshore northern Israel. The magmatic root of the Asher volcanics is, most probably, located close to the Yagur fault. A large, deep-seated gabbroic intrusion is assumed to be located under the Mediterranean abyssal plain in the NW part of the study area. The Atlit marine gravity low appears to be caused by a thick Mesozoic and Tertiary sedimentary accumulation. The results presented should be of considerable assistance in delineating some aspects of hydrocarbon exploration in the area.  相似文献   

7.
A detailed gravity survey was carried out on the island of Vulcano, Aeolian Islands, Italy. Gravity was measured on 107 stations and the Bouguer anomalies were computed by assuming geological densities. Aim of this survey was to complete the island structural pattern relatively to the shallower structures. Separation of the gravity anomaly field was carried out by means of data filtering, and two main components were discerned. The λ>2.2 km wavelength component, filtered out of the longer wavelength components, was interpreted quantitatively along a NW profile. The best fitting model consists of an upper layer of recent pyroclastic products (p=2.1 g/cm3) lying upon a highly compacted pyroclastic series or lavas (p=2.4 g/cm3). The shorter wavelength residual gravity field (λ<2.2 km) is characterized by two anomalies, located on Vulcanello and the «Fossa di Vulcano» crater. Vulcanello anomaly could be interpreted, given the geothermal state of the area, as due to an increase of the rock density consequent to propylization processes by high temperature fluids (T>200°C). «Fossa di Vulcano» anomaly is instead attributable to the local volcanic chimney. A schematic comprehensive model of Vulcano is also presented, which accounts for the available main geological and geophysical data.  相似文献   

8.
Available gravity and magnetic data of the Phlegraean Fields geothermal area, Naples, Italy, have been interpreted and the obtained structural models discussed in the light of the other available geological, volcanological and geophysical data.On the basis of the results of a previous seismic reflection survey in the Gulf of Naples and in the Pozzuoli Bay, which delineated a basement characterized by a seismic velocity of 4–6 km/s, it has been possible to evaluate the gravity anomaly connected with the morphology of this horizon ( = 2.7 g/cm3).The residual anomaly map, obtained after subtraction of the regional long-wavelength components relative to mantle and deep crustal structures and the computed components relative to the above-mentioned seismic basement, shows up as a circular low with an amplitude of 10 mgal centred in the Pozzuoli Bay. This gravity low has been interpreted as due to the occurrence, in the centre of Pozzuoli Bay, of light (Δ = −0.2 g/cm3) material with a maximum thickness of about 2 km. However, a contribution to the anomaly due to a narrow magmatic body intruded in the basement, as suggested by volcanological and ground deformation data, cannot be excluded.The aeromagnetic map of the Phlegraean Fields is characterized by three main anomalies which have been fitted by superficial tridimensional parallelepipedic bodies, schematically representing lava flows and domes. Their anomalies have been subsequently subtracted from the observed field, obtaining as a residual a large anomaly centred in the southwestern area of the Pozzuoli Bay. It has been interpreted as being due to a lowmagnetized body which, taking into account the thermal state of the area, should represent that part of the pyroclastic sequence which has lost part of its magnetization by thermo-chemical alteration.  相似文献   

9.
《Journal of Geodynamics》2003,35(1-2):209-220
The occurrence of swarm earthquakes in the Vogtland/NW-Bohemia area results probably from the physical interactions of fluids, the stress field and the geometry of the geological units. Therefore the present study aims at the development of a 3-D density model of the region with a vertical range of 35 km. A new Bouguer anomaly map is presented containing about 17 000 gravity data points. Prominent Bouguer anomalies are produced by the granites of Eibenstock and Karlovy Vary (low with −75 mGal), the metabasites near Mariánzké Lázně (high with 5 mGal) and the Münchberg Gneiss Massif (gravity high of Hof with 10 mGal). The geometry of the internal model structures correspond to geological units and, thus, the modelled gravity fits well the observed Bouguer anomaly. The 3-D gravimetric modellings indicate detailed geometries of the geological settings. With regard to the periodic occurrence of swarm earthquakes in the Vogtland region the existence of an upwelling mantle or a magmatic body is investigated. Precise information only can be given, if the vertical extension of the near surface bodies is known.  相似文献   

10.
Based on terrestrial gravity data, in this paper we prepared a map of Bouguer anomalies, which was filtered to separate shallow and deep gravity sources. Based on a density model and gravimetric inversion techniques, the discontinuous crust-mantle boundary and the top of crystalline basement were modeled. Subsequently, the equivalent elastic thickness (Te) was evaluated, considering information from the crust-mantle discontinuity and topographic load, finding high Te values in the eastern Andean foothills and west of the Velasco range. These results are consistent with the positive isostatic and residual Bouguer anomaly values, which suggest the presence of high-density rocks in the mid-to upper crust. In addition, petrographic and geochemical analysis conducted in surface outcrops suggest a mantle origin.  相似文献   

11.
黄海及邻区莫霍面起伏特征   总被引:2,自引:2,他引:0       下载免费PDF全文
针对地壳构造形成的动力学机制,在广泛收集区域地质、地质构造和地球物理等资料的基础上,着重对重力数据进行了数字化、坐标、重力公式、投影方式和比例尺的统一化处理,进而进行了网格化处理.为将区域异常和局部异常分离开来,以便以对深部构造的系统研究,笔者选取趋势分析法分别对研究区内预处理后的布格重力异常数据(Δg)进行了三维多项式迭代拟合计算,得到了区域布格重力异常二阶、五阶、十阶趋势分析结果.继而,利用二级近似公式迭代法对布格重力异常五阶趋势分析区域异常数据进行了三维运算处理,得到了黄海及周边地区的莫霍面埋深值.分析了黄海及邻区莫霍面起伏特征,并进行了深部构造区划,探讨了深部断裂构造与莫霍面起伏间的成因联系,为深部构造和活动断裂演化的地球动力学研究提供了依据.  相似文献   

12.
A compiled gravity anomaly map of the Western Himalayan Syntaxis is analysed to understand the tectonics of the region around the epicentre of Kashmir earthquake of October 8, 2005 (Mw = 7.6). Isostatic gravity anomalies and effective elastic thickness (EET) of lithosphere are assessed from coherence analysis between Bouguer anomaly and topography. The isostatic residual gravity high and gravity low correspond to the two main seismic zones in this region, viz. Indus–Kohistan Seismic Zone (IKSZ) and Hindu Kush Seismic Zones (HKSZ), respectively, suggesting a connection between siesmicity and gravity anomalies. The gravity high originates from the high-density thrusted rocks along the syntaxial bend of the Main Boundary Thrust and coincides with the region of the crustal thrust earthquakes, including the Kashmir earthquake of 2005. The gravity low of HKSZ coincides with the region of intermediate–deep-focus earthquakes, where crustal rocks are underthrusting with a higher speed to create low density cold mantle. Comparable EET (∼55 km) to the focal depth of crustal earthquakes suggests that whole crust is seismogenic and brittle. An integrated lithospheric model along a profile provides the crustal structure of the boundary zones with crustal thickness of about 60 km under the Karakoram–Pamir regions and suggests continental subduction from either sides (Indian and Eurasian) leading to a complex compressional environment for large earthquakes.  相似文献   

13.
Sharp linear gradients in maps of potential field data are generally assumed to result from sharp discontinuities or boundaries between rocks having different densities or magnetic susceptibilities and are usually associated with faults or other geological contacts. The computation of the horizontal gradients of the gravity field permits us to localize the limits of such blocks and then the fault locations. The horizontal derivative maxima of the Bouguer anomaly and its upward continuation at several heights show lineaments that could reflect the layout of faults and/or contacts and their dip directions. The application of this method to the Bouguer anomaly map of Morocco (with 19,571 points, using an average crustal density ρ = 2.67 g/cm3) allowed us to perform a multiscale analysis of the gravimetric lineaments of the country. The obtained structural map is consistent with several faults already identified in previous studies, and highlights five new major subsurface faults systems with location and dip: the Saghro fault system; Bou-Arfa Midelt fault system; Sidi Slimane Mezquitem fault; Ksar El Kebir–Chefchaouen fault and the Rifan West Mediterranean fault. In addition, this study suggests a new shape and localization for the Agadir-Oujda trans-Moroccan major fault with a NE-SW direction and 900 km length, subdividing Morocco into two main domains. The results of this study contribute to the improvement of the regional structural map of the north western part of Africa, which is situated within the convergence zone between Africa and Eurasia.  相似文献   

14.
This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (G h ) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the G h contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of G h , a belt about 10 km wide that extends to about 30 km; (3) Yinchuan-Pingluo fault (F8) is the seismogenic structure of the Pingluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly variation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.  相似文献   

15.
The gravity-geologic method (GGM) was implemented for 2′ by 2′ bathymetric determinations in a 1.6° longitude-by-1.0° latitude region centered on the eastern end of the Shackleton Fracture Zone in the Drake Passage, Antarctica. The GGM used the Bouguer slab approximation to process satellite altimetry-derived marine free-air gravity anomalies and 6,548 local shipborne bathymetric sounding measurements from the Korea Ocean Research and Development Institute to update the surrounding off-track bathymetry. The limitations of the Bouguer slab for modeling the gravity effects of variable density, rugged bathymetric relief at distances up to several kilometers, were mitigated by establishing ‘tuning’ densities that stabilized the GGM predictions. Tests using two-thirds of the shipborne bathymetric measurements to estimate the remaining third indicated that the tuning densities minimized root-mean-square deviations to about 29 m. The optimum GGM bathymetry model honoring all the ship observations correlated very well with widely available bathymetry models, despite local differences that ranged up to a few kilometers. The great analytical simplicity of GGM facilitates accurately and efficiently updating bathymetry as new gravity and bathymetric sounding data become available. Furthermore, the availability of marine free-air gravity anomaly data ensures that the GGM is more effective than simply extrapolating or interpolating ship bathymetry coverage into unmapped regions.  相似文献   

16.
We present a new local Bouguer anomaly map of the Central Volcanic Complex (CVC) of Tenerife, Spain, constructed from the amalgamation of 323 new high precision gravity measurements with existing gravity data from 361 observations. The new anomaly map images the high-density core of the CVC and the pronounced gravity low centred in the Las Cañadas caldera in greater detail than previously available. Mathematical construction of a sub-surface model from the local anomaly data, employing a 3D inversion based on “growing” the sub-surface density distribution via the aggregation of cells, enables mapping of the shallow structure beneath the complex, giving unprecedented insights into the sub-surface architecture. We find the resultant density distribution in agreement with geological and other geophysical data. The modelled sub-surface structure supports a vertical collapse origin of the caldera, and maps the headwall of the ca. 180 ka Icod landslide, which appears to lie buried beneath the Pico Viejo–Pico Teide stratovolcanic complex. The results allow us to put into context the recorded ground deformation and gravity changes at the CVC during its reactivation in spring 2004 in relation to its dominant structural building blocks. For example, the areas undergoing the most significant changes at depth in recent years are underlain by low-density material and are aligned along long-standing structural entities, which have shaped this volcanic ocean island over the past few million years.  相似文献   

17.
Fourier transformation of gravity and magnetic anomalies from space to the frequency domain provides aready method for source depth estimation since progressively deeper sources are indicated by the lower frequency components of an anomaly. Two examples are presented here to demonstrate the efficacy of this approach. One example pertains to the interpretation of vertical intensity magnetic anomalies over a layered ultramafic body for estimating the thickness of relatively non-magnetic layer in it and map the dispositions of the layers. The other example is the estimation of crustal thickness in the Indian region from the Bouguer anomaly map. The spectral method is shown, by these two examples, to provide a rapid and elegant tool for the source depth estimation for magnetic and gravity data.  相似文献   

18.
基于EGM2008重力场模型计算获得了渭河盆地及邻区布格重力异常。采用小波多尺度分解方法对布格重力异常进行了4阶小波逼近和小波细节分解,同时基于平均径向对数功率谱方法定量化地计算出1~4阶小波细节和小波逼近所对应的场源平均埋深。结合区域地质和地震资料,对获得的重力场结果进行分析,得到如下结论:①鄂尔多斯地块、渭河盆地、秦岭造山带3个一级构造单元的布格重力异常之间存在明显差异;构造区内部重力异常也存在横向的显著差异。布格重力异常的走向、规模、分布特征与二级构造区及主要的断裂具有一定的对应关系。②渭河盆地及邻区布格重力异常1~4阶细节对应4~23 km不同深度的场源信息,鄂尔多斯地块南缘东、西部的地壳结构存在明显的差异;渭河盆地凹陷、凸起构造区边界清晰,断裂边界与重力异常边界具有较好的一致性;秦岭造山带重力异常连贯性不好,东、西部重力异常变化特征表现出明显的差异。③渭河盆地及邻区布格重力异常分布与莫霍面埋深具有非常明显的镜像关系。渭河盆地及邻区地震主要分布在六盘山—陇县—宝鸡断裂带、渭河断裂与渭南塬前断裂交汇处、韩城断裂与双泉—临猗断裂交汇处。渭河盆地及邻区重力异常主要由中上地壳剩余密度体所影响,这可能是该区地震以浅源地震为主的主要原因。  相似文献   

19.
Geophysical data contiguous with the Narmada-Son lineament suggests its possible extension westward into the Arabian Sea and eastward up to the Shillong Plateau. The airborne magnetic anomaly map of the north Arabian Sea delineates a linear trend of magnetic anomalies in line with the Narmada-Son lineament. This group of magnetic anomalies, spreading over 20°N to 22°N, starts near the west coast of India at 21°N, 69°30′E and extends to the Murray Ridge. The tectonic feature represented by this group of magnetic anomalies is buried by a thick layer of sediments. This westward extension of the lineament is also reflected in the average Bouguer gravity anomaly map of the Indian Ocean. Towards the east, the gravity and magnetic data delineate a subsurface linear tectonic feature which extends in line with this lineament to the eastern syntaxial bend. These various geophysical signatures further suggest the lineament to be a typical rift-like structure. The tectonic implications of the lineament, which extends from the western to the eastern margins of the Indian plate, is discussed.  相似文献   

20.
As part of the resource evaluation and exploration program conducted by Los Alamos Scientific Laboratory for the national Hot Dry Rock (HDR) Geothermal Program, a regional magnetotelluric (MT) survey of New Mexico and Arizona is being performed. The MT lines are being located in areas where the results of analysis of residual gravity anomaly maps of Arizona and New Mexico, integrated with other geologic and geophysical studies indicate the greatest potential for HDR resources.The residual gravity anomalies are derived by applying the concept of predicting gravity anomalies from topography. This can be accomplished by employing reductions similar to those used in some isostatic investigations, in which a regional topographic surface is used as the Bouguer reduction datum. The datum is derived by comparison of various harmonics of Bouguer anomalies and elevations of stations. Topography can be used to predict Bouguer anomalies because of isostatic compensation; the resultant anomalies can be considered high frequency residual anomalies or isostatic anomalies corrected for regional compensation. Such maps have been produced for Arizona, New Mexico, west Texas, and Chihuahua, Mexico.The main objective of the MT project is to produce a regional geoelectric contour map of the pervasive deep electrical conductor within the crust and/or upper mantle beneath the Colorado Plateau and the adjacent Basin and Range Province and Rio Grande Rift. The MT survey consists of 200 sites along several long profiles with site spacing of 15–20 km. Pre-existing available MT data are being integrated with the new data. After the data are processed, a one-dimensional inversion is applied to the sounding curve and used as a starting point for 2-D modeling. Such a project and ultimate map will be of major value in studying the regional geophysics and tectonics of the southwest United States as they now apply to HDR resources in particular and geothermal resources in general.Electrical conductivity anomalies of large areal extent are of particular interest in geothermal exploration. Correlation analysis of large conductive anomalies with other geophysical, geological, and geotectonic data is being performed. Preliminary analysis of the data has suggested several major regions of anomalously shallow high electrical conductivity. Among these is the Aquarius area of northwest Arizona which is the site of a longwavelength residual anomaly low, which when modeled and correlated with other geophysical data can be shown to be possibly related to low density and high temperature in the crust at depths of 20 km or less. Preliminary analysis of MT data indicates the possible existence of a mid-crustal high electrical conductivity anomaly in this same region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号