首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Fontana Lapilli deposit was erupted in the late Pleistocene from a vent, or multiple vents, located near Masaya volcano (Nicaragua) and is the product of one of the largest basaltic Plinian eruptions studied so far. This eruption evolved from an initial sequence of fluctuating fountain-like events and moderately explosive pulses to a sustained Plinian episode depositing fall beds of highly vesicular basaltic-andesite scoria (SiO2 > 53 wt%). Samples show unimodal grain size distribution and a moderate sorting that are uniform in time. The juvenile component predominates (> 96 wt%) and consists of vesicular clasts with both sub-angular and fluidal, elongated shapes. We obtain a maximum plume height of 32 km and an associated mass eruption rate of 1.4 × 108 kg s−1 for the Plinian phase. Estimates of erupted volume are strongly sensitive to the technique used for the calculation and to the distribution of field data. Our best estimate for the erupted volume of the majority of the climactic Plinian phase is between 2.9 and 3.8 km3 and was obtained by applying a power-law fitting technique with different integration limits. The estimated eruption duration varies between 4 and 6 h. Marine-core data confirm that the tephra thinning is better fitted by a power-law than by an exponential trend.  相似文献   

2.
The stratigraphic succession of the Pomici di Avellino Plinian eruption from Somma-Vesuvius has been studied through field and laboratory data in order to reconstruct the eruption dynamics. This eruption is particularly important in the Somma-Vesuvius eruptive history because (1) its vent was offset with respect to the present day Vesuvius cone; (2) it was characterised by a distinct opening phase; (3) breccia-like very proximal fall deposits are preserved close to the vent and (4) the pyroclastic density currents generated during the final phreatomagmatic phase are among the most widespread and voluminous in the entire history of the volcano. The stratigraphic succession is, here, divided into deposits of three main eruptive phases (opening, magmatic Plinian and phreatomagmatic), which contain five eruption units. Short-lived sustained columns occurred twice during the opening phase (Ht of 13 and 21.5 km, respectively) and dispersed thin fall deposits and small pyroclastic density currents onto the volcano slopes. The magmatic Plinian phase produced the main volume of erupted deposits, emplacing white and grey fall deposits which were dispersed to the northeast. Peak column heights reached 23 and 31 km during the withdrawal of the white and the grey magmas, respectively. Only one small pyroclastic density current was emplaced during the main Plinian phase. In contrast, the final phreatomagmatic phase was characterised by extensive generation of pyroclastic density currents, with fallout deposits very subordinate and limited to the volcano slopes. Assessed bulk erupted volumes are 21 × 106 m3 for the opening phase, 1.3–1.5 km3 for the main Plinian phase and about 1 km3 for the final phreatomagmatic phase, yielding a total volume of about 2.5 km3. Pumice fragments are porphyritic with sanidine and clinopyroxene as the main mineral phases but also contain peculiar mineral phases like scapolite, nepheline and garnet. Bulk composition varies from phonolite (white magma) to tephri-phonolite (grey magma).  相似文献   

3.
The Fontana Lapilli deposit is one of very few examples of basaltic Plinian eruptions discovered so far. Juvenile clasts have uniform chemical composition and moderate ranges of density and bulk vesicularity. However, clast populations include two textural varieties which are microlite-poor and microlite-rich respectively. These two clast types have the same clast density range, making a distinction impossible on that base alone. The high bubble number density (~ 107 cm? 3) and small bubble population of the Fontana clasts suggest that the magma underwent coupled degassing following rapid decompression and fast ascent rate, leading to non-equilibrium degassing with continuous nucleation as it is common for silicic analogues. The Fontana products have lower microlite contents (10–60 vol.%) with respect to the other documented basaltic Plinian eruptions suggesting that the brittle fragmentation, implied for the other basaltic Plinian deposits, does not apply to the Fontana products and another fragmentation mechanism led the basaltic magma to erupt in a Plinian fashion.  相似文献   

4.
The Nevado de Toluca is a quiescent volcano located 20 km southwest of the City of Toluca and 70 km west of Mexico City. It has been quiescent since its last eruptive activity, dated at ∼ 3.3 ka BP. During the Pleistocene and Holocene, it experienced several eruptive phases, including five dome collapses with the emplacement of block-and-ash flows and four Plinian eruptions, including the 10.5 ka BP Plinian eruption that deposited more than 10 cm of sand-sized pumice in the area occupied today by Mexico City. A detailed geological map coupled with computer simulations (FLOW3D, TITAN2D, LAHARZ and HAZMAP softwares) were used to produce the volcanic hazard assessment. Based on the final hazard zonation the northern and eastern sectors of Nevado de Toluca would be affected by a greater number of phenomena in case of reappraisal activity. Block-and-ash flows will affect deep ravines up to a distance of 15 km and associated ash clouds could blanket the Toluca basin, whereas ash falls from Plinian events will have catastrophic effects for populated areas within a radius of 70 km, including the Mexico City Metropolitan area, inhabited by more than 20 million people. Independently of the activity of the volcano, lahars occur every year, affecting small villages settled down flow from main ravines.  相似文献   

5.
Petrological, mineralogical and chemical data of 46 ejecta deriving from the sedimentary basement beneath Somma-Vesuvius volcano are reported. The ejecta samples were collected in pumice deposits formed during two major Plinian eruptions. One of these pumice deposits was formed during the well-known 79 A.D. eruption, and the other one — the so-called Avellino pumice — during an eruption occurred about 3,500 years B.P. Most of the ejecta from both the layers are fragments of contact-metamorphosed carbonate rocks. For the ejecta of the 79 A.D. Plinian eruption, the mineralogical parageneses of the metamorphosed carbonate rocks (dolomite-Mg calcite-periclase, and dolomite-Mg calcite-brucite) allow the evaluation of the conditions under which contact metamorphism developed. Temperatures, estimated by the Mg content in the calcite coexisting with dolomite, ranged from 360° to 790°C, whereas total fluid pressure would not have exceeded 1,500–2,000 bars with a maximum depth of metamorphism (and hence of the magma chambers) of 5,000–6,000 m. The ejecta from the so-called Avellino pumice layer (characzerized prevalently by a dolomite-Mg calcite assemblage) show that contact metamorphism occurred under the same temperature range as that of the 79 A.D. ejecta, but at an higherP CO2 partial pressure and probably at an higher total fluid pressure. These differences in physico-chemical conditions of metamorphism seem to indicate that the two Plinian eruptions were fed probably by two different magma chambers. Comparison between chemical composition of the carbonate ejecta and carbonate samples of the Mesozoic sedimentary series outcropping near the volcano indicates that fragmentation of almost all the sequence were brought to the surface by the explosive Plinian eruptions. Although the data at our disposal do not provide any information on the size of the 79 A.D. eruption magma chamber, this probably had an important vertical length component of at least 2,000 m  相似文献   

6.
A new model is presented which simulates the dispersal and deposition of material from a Hawaiian eruption column. The model treats the Hawaiian column as a coarse-grained Plinian column and uses a modified version of the Wilson and Walker [Wilson, L., Walker, G.P.L., 1987. Explosive volcanic eruptions: VI. Ejecta dispersal in Plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys. J. R. Astron. Soc. 89, 657–679.] Plinian pyroclast dispersal model to simulate the fall out of material during a Hawaiian eruption. The model results are found to be in good agreement with independent estimates of various parameters made for the 1959 Kilauea Iki eruption of Kilauea volcano. The close agreement between the model results and these independent estimates shows that, dynamically, Hawaiian eruptions are indistinguishable from Plinian eruptions. The major differences in the styles and deposits of these two types of eruptions are accounted for by differences in the mass fluxes and gas contents of the erupting magmas and, most fundamentally, by differences in the grainsize distribution of the erupted clasts. Plume heights predicted by the model are greater than those found for previous models of Hawaiian eruptions. This is because previous models did not allow for the progressive fall out of particles from the plume and, more importantly, made no correction for the velocity disequilibrium between gas and clasts when the grainsize distribution is coarse.  相似文献   

7.
The 1875 rhyolitic eruption of Askja volcano in Iceland was a complex but well-documented silicic explosive eruption. Eyewitness chronologies, coupled with examination of very proximal exposures and historical records of distal deposit thickness, provide an unusual opportunity for study of Plinian and phreatoplinian eruption and plume dynamics. The ∼ 17 hour-long main eruption was characterized by abrupt and reversible shifts in eruption style, e.g., from ‘wet’ to ‘dry’ eruption conditions, and transitions from fall to flow activity. The main eruption began with a ‘dry’ subplinian phase (B), followed by a shift to a very powerful phreatoplinian ‘wet’ eruptive phase (C1). A shift from sustained ‘wet’ activity to the formation of ‘wet’ pyroclastic density currents followed with the C2 pyroclastic density currents, which became dryer with time. Severe ground shaking accompanied a migration in vent position and the onset of the intense ‘dry’ Plinian phase (D). Each of the fall units can be modeled using the segmented exponential thinning method (Bonadonna et al. 1998), and three to five segments have been recognized on a semilog plot of thickness vs. area1/2. The availability of very proximal and far-distal thickness data in addition to detailed observations taken during this eruption has enabled calculations of eruption parameters such as volumes, intensities and eruption column heights. This comprehensive dataset has been used here to assess the bias of volume calculations when proximal and distal data are missing, and to evaluate power-law and segmented exponential thinning methods using limited datasets.  相似文献   

8.
Basal layered deposits of the large-volume Peach Springs Tuff occur beneath the main pyroclastic flow deposit over a minimum lateral distance of 70 km in northwestern Arizona (USA). The basal deposits are interpreted to record initial blasting and pyroclastic surge events at the beginning of the eruption; the pyroclastic surges traveled a minimum of 100 km from the (as yet unknown) source. Changes in bedding structures with increasing flow distance are related to the decreasing sediment load of the surges. Some bed forms in the most proximal part of the study area (Kingman, Arizona) can be interpreted as being shock induced, reflecting a blast origin for the surges. Component analyses support a hydrovolcanic origin for some of the blasting and subsequent pyroclastic surges. The eruption apparently began with magmatic blasts, which were replaced by hydrovolcanic blasts. Hydrovolcanic activity may be partially related to failure of the conduit walls that temporarily plugged the vent. A single large-volume pyroclastic flow immediately followed the blast phase, and no evidence has been observed for a Plinian eruption column. The stratigraphic sequence indicates that powerful hydrovolcanic blasting rapidly widened the vent, thus bypassing a Plinian fallout phase and causing rapid evolution to a collapsing eruption column. Similar processes may occur in other large-volume ignimbrite eruptions, which commonly lack significant Plinian fallout deposits.  相似文献   

9.
Investigations have shown the existence of a linear relationship between point-source resistivity data and line-source resistivity data through a matrix operator, which paves the way for the efficient transformation of line-source data to the corresponding point-source data and vice versa. The power of these equations has been established by computational examples. The relationship will be useful in the modelling and inversion of resistivity data from 2D structures.  相似文献   

10.
Since the eruption which affected Quito in AD 1660, Guagua Pichincha has been considered a hazardous volcano. Based on field studies and twenty 14C dates, this paper discusses the eruptive activity of this volcano, especially that of the last 2000 years. Three major Plinian eruptions with substantial pumice discharge occurred in the 1st century, the 10th century, and in AD 1660. The ages of organic paleosols and charcoal from block-and-ash flow and fallout deposits indicate that these eruptions occurred near the end of 100 to 200 year-long cycles of discontinuous activity which was comprised of dome growth episodes and minor pumice fallouts. The first cycle took place from ~ AD 1 to 140. The second one developed during the 9th and 10th centuries, lasted 150–180 yr, and included the largest Plinian event, with a VEI of 5. The third, historic cycle, about 200 yr in duration, includes pyroclastic episodes around AD 1450 and AD 1500, explosive activity between AD 1566 and AD 1582, possible precursors of the 1660 eruption in the early decades of the 17th century, and finally the 1660 eruption (VEI 4). A fourth event probably occurred around AD 500, but its authenticity requires confirmation. The Plinian events occurred at the end of these cycles which were separated by repose periods of at least 300 yr. Older volcanic activity of similar type occurred between ~ 4000 and ~ 3000 yr BP.  相似文献   

11.
A review of compositional data of the major explosive eruptions of Vesuvius is presented, comparing compositions (major elements) of whole rock with glass shards from the proximal deposits, hopefully useful for long-distance correlation. A critical review of published and new geochronological data is also provided. All available 14C ages are calibrated to give calendar ages useful for the reconstruction of the volcanological evolution of the volcanic complex. The pyroclastic deposits of the four major Plinian eruptions (22,000 yr cal BP “Pomici di Base”, 8900 yr cal BP “Mercato Pumice”, 4300 yr cal BP “Avellino Pumice”, and A.D. 79 “Pompeii Pumice”) are widely dispersed and allow a four-folded, Plinian to Plinian, stratigraphic division: 1. B–M (between Pomici di Base and Mercato); 2. M–A (between Mercato and Avellino); 3. A–P (between Avellino and Pompeii); 4. P–XX (from the Pompeii Pumice to the last erupted products of the XXth century). Within each interval, the age, lithologic and compositional features of pyroclastic deposits of major eruptions, potentially useful for tephrostratigraphic purposes on distal areas, are briefly discussed. The Vesuvius rocks are mostly high Potassic products, widely variable in terms of their silica saturation. They form three groups, different for both composition and age: 1. slightly undersaturated, older than Mercato eruption; 2. mildly undersaturated, from Mercato to Pompeii eruptions; 3. highly undersaturated, younger than Pompeii eruption. For whole rock analyses, the peculiar variations in contents of some major and trace elements as well as different trends in element/element ratios, allow a clear, unequivocal, easy diagnosis of the group they belong. Glass analyses show large compositional overlap between different groups, but selected element vs. element plots are distinctive for the three groups. The comparative analysis of glass and whole rock major element compositions provides reliable geochemical criteria helping in the recognition, frequently not obvious, of distal products from the different single eruptions.  相似文献   

12.
The 1886 eruption of Tarawera, New Zealand, was unusual for a Plinian eruption because it involved entirely basaltic magma, originated in a 17-km-long fissure, and produced extremely overthickened proximal deposits with a complex geometry. This study focuses on an 8-km-long segment cutting across Mount Tarawera where over 50 point-source vents were active during the 5.5-h eruption. A detailed characterization of the proximal deposits is developed and used to interpret the range of styles and intensities of the vents, including changes with time. We identify the four vents that contributed most heavily to the Plinian fall and evaluate the extent to which current volcanic plume models are compatible with the depositional patterns at Tarawera. Three proximal units are mapped that have phreatomagmatic, magmatic, and phreatomagmatic characteristics, respectively. Within the magmatic proximal unit, beds of like character are grouped into packages and delineated on scaled cross sections. Package dispersal is quantified by measuring the linear thickness half-distance (t1/2) in the planes of the fissure walls. Most packages have localized dispersals (low t1/2), indicating that Strombolian-style activity dominated most vents. The more widely dispersed packages (high t1/2) reflect contributions from additional transport regimes that were more vigorous but still contributed considerable material to the proximal region. We conclude that the geometry of the observed proximal deposits requires three modes of fall transport: (1) fallout from the upper portions of the Plinian plumes produced principally by vents in four craters; (2) sedimentation from the margins of the lower portions of the Plinian plumes including the jets and possibly the lower convective regions; and (3) ejection by weak Strombolian-style explosions from vents that did not contribute significant volumes of particles to the high plume. We suggest that the curvature of the velocity profile across the jet region of each plume (1–4 km height) was important, and that the lower velocity at the margins allowed proximal deposition of a large volume of material with a wide grain-size range.  相似文献   

13.
Plinian eruptions are amongst the most powerful of explosive volcanic events, and the extensive pumice deposits which they produce have an exceptionally wide dispersal because of the great eruptive plume height. Historical data on 12 plinian eruptions, and available quantitative data on the deposits of these and 37 other plinian eruptions are collated in this review to characterise further the plinian eruptive style and its products and to establish the known limits of their variation. The deposit volumes have been recomputed according to a standard procedure to provide a better basis for comparison, and they vary over 4 orders of magnitude to reach a maximum of about 100 km3. Almost all volcanic magma compositions apart from the most mafic are represented among the juvenile products; rhyolitic and dacitic deposits account for 80% of the total volume and basaltic ones less than 1%. Compositional zoning is very common. Plinian eruptions are of open vent type and produce deposits which tend to be homogeneous in grain size and constitution through their thickness. Considerable departures from homogeneity often however exist. Finer grained beds which often interrupt the continuity can be produced by a number of different mechanisms, the features of which are summarised. In a significant proportion of plinian deposits the finer beds are the deposits of intraplinian pyroclastic flows, or are related to such flows; pyroclastic flows such as may be attributable to column collapse thus do not form exclusively at the end of the plinian phase. The most recent work indicates that major phreatoplinian eruptions dominated by the copious inflow of water into the vent can produce deposits quite as widely dispersed and as voluminous as the biggest plinian eruptions, and it appears that the characteristics of the grain size populations of the two types tend to converge in the most powerful eruptions.  相似文献   

14.
Sub-Plinian to Plinian eruptions of basic magma present a challenge to modeling volcanic behavior because many models rely on magma becoming viscous enough during ascent to behave brittlely and cause fragmentation. Such models are unable, however, to strain low viscosity magma fast enough for it to behave brittlely. That assumes that such magmas actually have low viscosities, but the rare Plinian eruptions of basic magma may in fact result from them being anomalously viscous. Here, we examine two such eruptions, the 122 B.C. eruption of hawaiitic basalt from Mt. Etna and the late Pleistocene eruption of basaltic andesite from Masaya Caldera, to test whether they were anomalously viscous. We carried out hydrothermal experiments on both magmas and analyzed glass inclusions in plagioclase phenocrysts from each to determine their most likely pre-eruptive temperatures and water contents. We find that the hawaiite was last stored at 1,000–1,020°C, whereas the basaltic andesite was last stored at 1,010–1,060°C, and that both were water saturated with ∼3.0 wt.% water dissolved in them. Such water contents are not high enough to trigger Plinian explosive behavior, as much more hydrous basic magmas erupt less violently. In addition, despite being relatively cool, the viscosities of both magmas would range from ∼102.2–2.5 Pa s before erupting to ∼104 Pa s when essentially degassed, all of which are too fluid to cause brittle disruption. Without invoking special external forces to explain all such eruptions, one of the more plausible explanations is that when the bubble content reaches some critical value the fragile foam-like magma disrupts. The rarity of Plinian eruptions of basic magma may be because such magmas must ascend fast enough to retain their bubbles.  相似文献   

15.
The 79 AD eruption of Vesuvius included 8 eruption units (EU1–8) and several complex transitions in eruptive style. This study focuses on two important transitions: (1) the abrupt change from white to gray pumice during the Plinian phase of the eruption (EU2 to EU3) and (2) the shift from sustained Plinian activity to the onset of caldera collapse (EU3 to EU4). Quantification of the textural features within individual pumice clasts reveals important changes in both the vesicles and groundmass crystals across each transition boundary. Clasts from the white Plinian fall deposit (EU2) present a simple story of decompression-driven crystallization followed by continuous bubble nucleation, growth and coalescence in the eruptive conduit. In contrast, pumices from the overlying gray Plinian fall deposit (EU3) are heterogeneous and show a wide range in both bubble and crystal textures. Extensive bubble growth, coalescence, and the onset of bubble collapse in pumices at the base of EU3 suggest that the early EU3 magma experienced protracted vesiculation that began during eruption of the EU2 phase and was modified by the physical effects of syn-eruptive mingling-mixing. Pumice clasts from higher in EU3 show higher bubble and crystal number densities and less evidence of bubble collapse, textural features that are interpreted to reflect more thorough mixing of two magmas by this stage of the eruption, with consequent increases in both vesiculation and crystallization. Pumice clasts from a short-lived, high column at the onset of caldera collapse (EU4) continue the trend of increasing crystallization (enhanced by mixing) but, unexpectedly, the melt in these clasts is more vesicular than in EU3 and, in the extreme, can be classified as reticulite. We suggest that the high melt vesicularity of EU4 reflects strong decompression following the partial collapse of the magma chamber.Editorial responsibility: D.B. Dingwell  相似文献   

16.
The solution of a boundary value problem modelling a two-dimensional basin structure has been obtained by using the Schwartz-Christoffel conformal transformation technique and numerical methods of solving non-linear differential equations. Utilizing this solution, the telluric field and its first horizontal derivative have been theoretically computed for field directions perpendicular to the strike of the structure. On the basis of systematic analysis of a large number of such anomaly curves, two nomograms have been prepared to be used in the quantitative interpretation of telluric data. An interpretation procedure to evaluate the geometric parameters of the basin from the observed telluric data is outlined. This procedure is demonstrated on an actual field example.  相似文献   

17.
Abstract

The problem of identifying and reproducing the hydrological behaviour of groundwater systems can often be set in terms of ordinary differential equations relating the inputs and outputs of their physical components under simplifying assumptions. Conceptual linear and nonlinear models described as ordinary differential equations are widely used in hydrology and can be found in several studies. Groundwater systems can be described conceptually as an interlinked reservoir model structured as a series of nonlinear tanks, so that the groundwater table can be schematized as the water level in one of the interconnected tanks. In this work, we propose a methodology for inferring the dynamics of a groundwater system response to rainfall, based on recorded time series data. The use of evolutionary techniques to infer differential equations from data in order to obtain their intrinsic phenomenological dynamics has been investigated recently by a few authors and is referred to as evolutionary modelling. A strategy named Evolutionary Polynomial Regression (EPR) has been applied to a real hydrogeological system, the shallow unconfined aquifer of Brindisi, southern Italy, for which 528 recorded monthly data over a 44-year period are available. The EPR returns a set of non-dominated models, as ordinary differential equations, reproducing the system dynamics. The choice of the representative model can be made both on the basis of its performance against a test data set and based on its incorporation of terms that actually entail physical meaning with respect to the conceptualization of the system.

Citation Doglioni, A., Mancarella, D., Simeone, V. & Giustolisi, O. (2010) Inferring groundwater system dynamics from hydrological time-series data. Hydrol. Sci. J. 55(4), 593–608.  相似文献   

18.
The 1886 Plinian eruption of Tarawera, New Zealand, is a unique basaltic fissure-fed eruption with exceptionally well preserved fall deposits to within 200 meters of the source vents. These proximal deposits form a series of spatter/cinder half-cones along the northeastern 8-km-long segment of the 1886 fissure. Here we examine these deposits using grain size and clast componentry techniques. We contrast the products of the phreatomagmatic (phases I and III) and Plinian (Phase II) stages of the eruption and examine deposit variability as a function of contrasting eruptive intensity within the climactic phase (II) of the eruption. The opening phreatomagmatic phase I of the eruption involved gas-rich magma interacting with water and fragmenting at least 300 meters below the surface. The deposits of the climactic phase that followed have relatively uniform grain size but marked contrasts in the relative abundance of juvenile and wall rock (lithic) clasts. Deposits linked to vents associated with the high Plinian plume are more uniform than those characterized by a weaker cone-forming eruption style. During the third, and closing, phase of the eruption, magma withdrawal accompanied the onset of decoupling of the exsolved gas phase, leading to fragmentation at increasingly greater depths and significant wall rock collapse into the erupting vents. Variability in eruptive style during phase II along the fissure appears to be a function of shallow seated controls, in particular the variable extent of incorporation of lithic wall rock into the erupting jet, as a consequence of vent wall collapse. Widely dispersed beds centralized around Plinian sources along the fissure have very low lithic content; cone-forming beds at other craters that contain very high lithic contents. This incorporation led to a significant reduction of the velocity and stability of the jet at these latter steep-walled craters, and induced episodicity in the form of vent-clearing explosions. The result is a large reduction of the physical and thermal ability of these vents to contribute to a stable high eruptive plume. Instead large volumes of ejecta were sedimented prematurely from shallow heights at rates an order of magnitude greater than for historical Strombolian, Hawaiian and subPlinian eruptions. This study illustrates that sustained powerful Plinian eruptions can be accompanied by heterogeneities and instabilities of the eruptive jet. At Tarawera, the record of complex proximal transport and deposition processes in the eruptive jet cannot be inferred from the eruption products at distances greater than 400 m from the eruptive fissure. We suggest that study of ultraproximal deposits, as seen at Mt Tarawera, provides the only opportunity to document the complex, dynamic behavior of the jet region of Plinian eruptions.  相似文献   

19.
Numerical Modelling in Geo-Electromagnetics: Advances and Challenges   总被引:11,自引:0,他引:11  
During the last decade, tremendous advances have been observed in the broad field of numerical modelling for geo-electromagnetic applications. This trend received support due to increasing industrial needs, mainly caused by hydrocarbon and ore exploration industry. On the other hand, the increasing reliability and accuracy of data acquisition techniques further spurs this development. In this review, we will focus on advances and challenges in numerical modelling in geo-electromagnetics. We review recent developments in the discrete solution of the 3-D induction problem in the time and frequency domains. Particularly, advantages and disadvantages of the common numerical techniques for solving partial differential equations such as the Finite Difference and Finite Element methods will be considered.  相似文献   

20.
In this article we present the modelling of uncertainty in strong-motion studies for engineering applications, particularly for the assessment of earthquake hazard. We examine and quantify the sources of uncertainty in the basic variables involved in ground motion estimation equations, including those associated with the seismological parameters, which we derive from a considerable number of strong-motion records. Models derived from regression analysis result in ground motion equations with uncertain parameters, which are directly related to the selected basic variables thus providing an uncertainty measure for the derivative variable. These uncertainties are exemplified and quantified. An alternative approach is presented which is based on theoretical modelling defining a functional relationship on a set of independent basic variables. Uncertainty in the derivative variable is then readily obtained when the uncertainties of the basic variables have been defined. In order to simplify the presentation, only the case of shallow strike-slip earthquakes is presented. We conclude that the uncertainty is approximately the same as given by the residuals typical for regression modelling. This implies that uncertainty in ground motion modelling cannot be reduced below certain limits, which is in accordance with findings reported in the literature. Finally we discuss the implications of the presented methodology in hazard analyses, which is sensitive to the truncation of the internal error term, commonly given as an integral part of ground motion estimation equations. The presented methodology does not suffer from this shortcoming; it does not require truncation of the error term and yields realistic hazard estimates. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号