首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stromboli volcano has been in continuous eruption for several thousand years without major changes in the geometry and feeding system. The thermal structure of its upper part is therefore expected to be close to steady state. In order to mantaim explosive activity, magma must release both gas and heat. It is shown that the thermal and gas budgets of the volcano lead to consistent conclusions. The thermal budget of the volcano is studied by means of a finite-element numerical model under the assumption of conduction heat transfer. It is found that the heat loss through the walls of an eruption conduit is weakly sensitive to the dimensions of underlying magma reservoirs and depends mostly on the radius and length of the conduit. In steady state, this heat loss must be balanced by the cooling of magma which flows through the system. For the magma flux of about 1 kg s-1 corresponding to normal Strombolian activity, this requires that the conduits are a few meters wide and not deeper than a few hundred meters. This implies the existence of a magma chamber at shallow depth within the volcanic edifice. This conclusion is shown to be consistent with considerations on the thermal effects of degassing. In a Strombolian explosion, the mass ratio of gas to lava is very large, commonly exceeding two, which implies that the thermal evolution of the erupting mixture is dominated by that of the gas phase. The large energy loss due to decompression of the gas phase leads to decreased eruption temperatures. The fact that lava is molten upon eruption implies that the mixture does not rise from more than about 200 m depth. To sustain the magmatic and volcanic activity of Stromboli, a mass flux of magma of a few hundred kilograms per second must be supplied to the upper parts of the edifice. This represents either the rate of magma production from the mantle source feeding the volcano or the rate of magma overturn in the interior of a large chamber.  相似文献   

2.
In this work, we report the results of an integrated approach using both seismological and geodetic data provided by the INGV-CT (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania) Stromboli volcano monitoring systems, in order to improve the knowledge of its plumbing system. In particular, we investigated the relationships between the June 1999 seismic swarm, occurring in the area of Stromboli, and the possible activation of the NE–SW oriented volcano-tectonic structure. We analyzed this seismic swarm proposing new locations and a morphological analysis of the waveforms. This approach allowed us to demonstrate that there are relationships between the tectonic activity near Stromboli and the rising of magma. This evidence supports the hypothesis that during the 1999 swarm an intrusive process started from a crustal level where earthquakes were located (about 10–15 km b.s.l.).  相似文献   

3.
The investigation of the time dynamics of volcanic tremor recorded at Stromboli volcano before the paroxysm occurred on April 5, 2003 was performed, on the base of a new approach, the Fisher Information Measure (FIM), which allows to detect changes in the dynamical behavior of a complex system. The particular observed pattern suggests that the signal varies between sets of disordered states (small FIM) and sets of ordered states (large FIM). Significant precursory changes in the temporal variation of the FIM were revealed at least 42 h before the paroxysm and lasting about 17 h. The timescales highlighted are compatible to those found by other authors and could qualify the FIM as a good detector of regime changes and possible precursors of anomalous volcanic activity.  相似文献   

4.
The role of sector collapse in the generation of catastrophic volcanigenic tsunami has become well understood only recently, in part because of the problems in the preservation and recognition of tsunami deposits. Tinti et al. [Tinti, S., Bortolucci, E., Romagnoli, C., 2000. Computer simulations of tsunamis due to sector collapse at Stromboli, Italy. J. Volcanol. Geotherm. Res. 96, 103–128] modeled a tsunami produced by the c. 5,000 years BP collapse of the Sciara del Fuoco on the island volcano Stromboli. Although deposits associated with this event are generally lacking on the island, volcaniclastic breccias on the SE side of the island extending to an elevation above 120 m a.s.l. may have been generated by this tsunami. Deposits above 100 m are dominated by coarse breccias comprising disorganized, poorly sorted, nonbedded, angular to subangular lava blocks in a matrix of finer pyroclastic debris. These breccias are interpreted as a water-induced mass flow, possibly a noncohesive debris flow, generated as colluvial material on steep slopes was remobilized by the return flow of the tsunami wave, the run-up of which reached an elevation exceeding 120 m a.s.l. Finer breccias of subrounded to rounded lava blocks cropping out at 15 m a.s.l. are similar to modern high-energy beach deposits and are interpreted as beach material redeposited by the advancing tsunami wave. The location of these deposits matches the predicted location of the maximum tsunami wave amplitude as calculated by modeling studies of Tinti et al. [Tinti, S., Bortolucci, E., Romagnoli, C., 2000. Computer simulations of tsunamis due to sector collapse at Stromboli, Italy. J. Volcanol. Geotherm. Res. 96, 103–128]. Whereas the identification and modeling of paleo-tsunami events is typically based on the observation of the sedimentary deposits of the tsunami run-up, return flow may be equally or more important in controlling patterns of sedimentation.  相似文献   

5.
Concentrations of chloride and sulfate and pH in the hot crater lake (Laguna Caliente) at Poás volcano and in acid rain varied over the period 1993–1997. These parameters are related to changes in lake volume and temperature, and changes in summit seismicity and fumarole activity beneath the active crater. During this period, lake level increased from near zero to its highest level since 1953, lake temperature declined from a maximum value of 70°C to a minimum value of 25°C, and pH of the lake water increased from near zero to 1.8. In May 1993 when the lake was nearly dry, chloride and sulfate concentrations in the lake water reached 85,400 and 91,000 mg l−1, respectively. Minimum concentrations of chloride and sulfate after the lake refilled to its maximum volume were 2630 and 4060 mg l−1, respectively. Between January 1993 and May 1995, most fumarolic activity was focused through the bottom of the lake. After May 1995, fumarolic discharge through the bottom of the lake declined and reappeared outside the lake within the main crater area. The appearance of new fumaroles on the composite pyroclastic cone coincided with a dramatic decrease in type B seismicity after January 1996. Between May 1995 and December 1997, enhanced periods of type A seismicity and episodes of harmonic tremor were associated with an increase in the number of fumaroles and the intensity of degassing on the composite pyroclastic cone adjacent to the crater lake. Increases in summit seismic activity (type A, B and harmonic tremor) and in the height of eruption plumes through the lake bottom are associated with a period of enhanced volcanic activity during April–September 1994. At this time, visual observations and remote fumarole temperature measurements suggest an increase in the flux of heat and gases discharged through the bottom of the crater lake, possibly related to renewed magma ascent beneath the active crater. A similar period of enhanced seismic activity that occurred between August 1995 and January 1996, apparently caused fracturing of sealed fumarole conduits beneath the composite pyroclastic cone allowing the focus of fumarolic degassing to migrate from beneath the lake back to the 1953–1955 cone. Changes in the chemistry of summit acid rain are correlated changes in volcanic activity regardless of whether fumaroles are discharging into the lake or are discharging directly into the atmosphere.  相似文献   

6.
In this paper, we present a complete morphological characterization of the ash particles erupted on 18 December 2002 from Etna volcano, Italy. The work is based on the acquisition and processing of bidimensional digital images carried out by scanning electron microscopy (SEM) to obtain shape parameters by image analysis. We measure aspect ratio (AR), form factor (FF), compactness (CC), and rectangularity (RT) of 2065 ash particles with size between 0.026 and 1.122 mm. We evaluate the variation of these parameters as a function of the grain-size. Ash particles with a diameter of <0.125 mm vary from mostly equant to very equant, ash particles between 0.125 and 0.250 mm have an intermediate shape, and particles with diameters >0.250 mm are subelongate. We find that, on average, particles with a diameter of <0.250 mm are subrounded, particles between 0.250 and 0.50 mm are subangular, and particles >0.50 mm are angular. Using this morphological analysis and an empirical relation between the drag coefficient (C D) and Reynolds number (R e) of Wilson and Huang (Earth Planet Sci Lett 44:311–324, 1979), we calculate the terminal settling velocities (V WH). The comparisons between these velocities and those calculated with the formula of Kunii and Levenspiel (Fluidization engineering. Wiley, New York, pp 97, 1969) (V KL), which considers ash particles as spheres, show that V KL are in average 1.28 greater than V WH. Hence, we quantify the systematic error on the spatial distribution of the mass computed around the volcano carried out by tephra dispersal models when the particles are assumed to be spherical.  相似文献   

7.
The Senyama volcanic products of the late Pliocene to early Pleistocene O’e Takayama volcano overlie a 100-m-thick, late Pliocene coastal quartz-sandstone and are intruded by an early Pleistocene dacite dome. The Senyama volcanic products are the remains of a cone that retains a basal part 1.5 km across and 150–250 m high from the substrate. The cone comprises dacite block-and-ash flow deposits and minor base-surge deposits occur at the base. Single beds of the block-and-ash flow deposits are 1–16 m thick and dip inward 20–40° at the base of the cone and inward or outward 10–20° at the summit. Juvenile fragments in the block-and-ash flow deposits are non- to poorly vesicular and commonly have curviplanar surfaces and prismatic joints extending inward from the surfaces, which imply quenching and brittle fracturing of dacite lava. They are variably hydrothermally altered. Nevertheless, juvenile blocks appear to retain a uniform direction of the magnetization vector residual during thermal demagnetization between 280°C and 625°C. At the time of the eruption, the well-sorted sand of the substrate was at the coast and a good aquifer that facilitated explosive interaction of water and the ascending dacite lava. The mechanism of the explosion perhaps involved thermal contraction cracking of the dacite lava, water-inflow into the interior of the lava, and explosive expansion of the water. Initial phreatomagmatic explosions opened the vent. Succeeding phreatomagmatic or phreatomagmatic–vulcanian explosions produced block-and-ash flow deposits around the vent. Hydrothermal silver-ore deposits and manganese-oxide deposits occur in the Senyama volcanic products and the underlying sandstone, respectively. They could represent post-eruptive activity of the hydrothermal system developed in and around the cone.  相似文献   

8.
The Active Crater at Rincón de la Vieja volcano, Costa Rica, reaches an elevation of 1750 m and contains a warm, hyper-acidic crater lake that probably formed soon after the eruption of the Rio Blanco tephra deposit approximately 3500 years before present. The Active Crater is buttressed by volcanic ridges and older craters on all sides except the north, which dips steeply toward the Caribbean coastal plains. Acidic, above-ambient-temperature streams are found along the Active Crater's north flank at elevations between 800 and 1000 m. A geochemical survey of thermal and non-thermal waters at Rincón de la Vieja was done in 1989 to determine whether hyper-acidic fluids are leaking from the Active Crater through the north flank, affecting the composition of north-flank streams.Results of the water-chemistry survey reveal that three distinct thermal waters are found on the flanks of Rincón de la Vieja volcano: acid chloride–sulfate (ACS), acid sulfate (AS), and neutral chloride (NC) waters. The most extreme ACS water was collected from the crater lake that fills the Active Crater. Chemical analyses of the lake water reveal a hyper-acidic (pH0) chloride–sulfate brine with elevated concentrations of calcium, magnesium, aluminum, iron, manganese, copper, zinc, fluorine, and boron. The composition of the brine reflects the combined effects of magmatic degassing from a shallow magma body beneath the Active Crater, dissolution of andesitic volcanic rock, and evaporative concentration of dissolved constituents at above-ambient temperatures. Similar cation and anion enrichments are found in the above-ambient-temperature streams draining the north flank of the Active Crater. The pH of north-flank thermal waters range from 3.6 to 4.1 and chloride:sulfate ratios (1.2–1.4) that are a factor of two greater than that of the lake brine (0.60). The waters have an ACS composition that is quite different from the AS and NC thermal waters that occur along the southern flank of Rincón de la Vieja.The distribution of thermal water types at Rincón de la Vieja strongly indicates that formation of the north-flank ACS waters is not due to mixing of shallow, steam-heated AS water with deep-seated NC water. More likely, hyper-acidic brines formed in the Active Crater area are migrating through permeable zones in the volcanic strata that make up the Active Crater's north flank. Dissolution and shallow subsurface alteration of north-flank volcanoclastic material by interaction with acidic lake brine, particularly in the more permeable tephra units, could weaken the already oversteepened north flank of the Active Crater. Sector collapse of the Active Crater, with or without a volcanic eruption, represents a potential threat to human lives, property, and ecosystems at Rincón de la Vieja volcano.  相似文献   

9.
The Nevado de Toluca is a quiescent volcano located 20 km southwest of the City of Toluca and 70 km west of Mexico City. It has been quiescent since its last eruptive activity, dated at ∼ 3.3 ka BP. During the Pleistocene and Holocene, it experienced several eruptive phases, including five dome collapses with the emplacement of block-and-ash flows and four Plinian eruptions, including the 10.5 ka BP Plinian eruption that deposited more than 10 cm of sand-sized pumice in the area occupied today by Mexico City. A detailed geological map coupled with computer simulations (FLOW3D, TITAN2D, LAHARZ and HAZMAP softwares) were used to produce the volcanic hazard assessment. Based on the final hazard zonation the northern and eastern sectors of Nevado de Toluca would be affected by a greater number of phenomena in case of reappraisal activity. Block-and-ash flows will affect deep ravines up to a distance of 15 km and associated ash clouds could blanket the Toluca basin, whereas ash falls from Plinian events will have catastrophic effects for populated areas within a radius of 70 km, including the Mexico City Metropolitan area, inhabited by more than 20 million people. Independently of the activity of the volcano, lahars occur every year, affecting small villages settled down flow from main ravines.  相似文献   

10.
The internal riverine processes acting upon phosphorus and dissolved silicon were investigated along a 55 km stretch of the River Swale during four monitoring campaigns. Samples of river water were taken at 3 h intervals at sites on the main river and the three major tributaries. Samples were analysed for soluble reactive phosphorus, total dissolved phosphorus, total phosphorus, dissolved silicon and suspended solid concentration. Mass‐balances for each determinand were calculated by comparing the total load entering the river with the total load measured at the downstream site. The difference, i.e. the residual load, showed that there was a large retention of phosphorus and silicon within the system during the March 1998 flood event, but the other three campaigns produced net‐exports. Cumulative residual loads were calculated for each determinand at 6 h intervals throughout each campaign. This incremental approach showed that the mass‐balance residuals followed relatively consistent patterns under various river discharges. During stable low‐flow, there was a retention of particulate phosphorus within the system and also a retention of total dissolved phosphorus and soluble reactive phosphorus, most likely caused by the sorption of soluble phosphorus by bed‐sediments. In times of high river‐discharge, there was a mobilization and export of stored bed‐sediment phosphorus. During overbank flooding, there was a large retention (58% of total input) of particulate phosphorus within the system, due to the mass deposition of phosphorus‐rich sediment onto the floodplain. Soluble phosphorus was also retained within the system by sequestration from the water column by the high concentration of suspended solids. The dissolved silicon mass‐balance residuals had a less consistent pattern in relation to river discharge. There was a large retention of dissolved silicon during overbank flooding, possibly due to sorption onto floodplain soil, and net‐exports during periods of both stable low‐flow and rising limbs of hydrographs, due to release of dissolved silicon from pore‐waters. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
We report new Nd, Hf, Sr, and high-precision Pb isotopic data for 44 lava and tephra samples from Erebus volcano. The samples cover the entire compositional range from basanite to phonolite and trachyte, and represent all three phases of the volcanic evolution from 1.3 Ma to the present. Isotopic analyses of 7 samples from Mt. Morning and the Dry Valley Drilling Project (DVDP) are given for comparison. The Erebus volcano samples have radiogenic 206Pb/204Pb, unradiogenic 87Sr/86Sr, and intermediate 143Nd/144Nd and 176Hf/177Hf, and lie along a mixing trajectory between the two end-member mantle components DMM and HIMU. The Erebus time series data show a marked distinction between the early-phase basanites and phonotephrites, whose Nd, Hf, Sr, and Pb isotope compositions are variable (particularly Pb), and the current ‘phase-three’ evolved phonolitic lavas and bombs, whose Nd, Hf, Sr, and Pb isotope compositions are essentially invariant. Magma mixing is inferred to play a fundamental role in establishing the isotopic and compositional uniformity in the evolved phase-three phonolites. In-situ analyses of Pb isotopes in melt inclusions hosted in an anorthoclase crystal from a 1984 Erebus phonolite bomb and in an olivine from a DVDP basanite are uniform and identical to the host lavas within analytical uncertainties. We suggest that, in both cases, the magma was well mixed at the time melt inclusions were incorporated into the different mineral phases.  相似文献   

12.
A high‐magnitude flash flood, which took place on 25 October 2011 in the Magra River catchment (1717 km2), central‐northern Italy, is used to illustrate some aspects of the geomorphic response to the flood. An overall methodological framework is described for using interlinked observations and analyses of the geomorphic impacts of an extreme event. The following methods and analyses were carried out: (i) hydrological and hydraulic analysis of the event; (ii) sediment delivery by event landslide mapping; (iii) identification and estimation of wood recruitment, deposition, and budgeting; (iv) interpretation of morphological processes by analysing fluvial deposits; (v) remote sensing and geographic information system (GIS) analysis of channel width changes. In response to the high‐magnitude hydrological event, a large number of landslides occurred, consisting of earth flows, soil slips, and translational slides, and a large quantity of wood was recruited, in most part deriving from floodplain erosion caused by bank retreat and channel widening. The most important impact of the flood event within the valley floor was an impressive widening of the overall channel bed and the reactivation of wide portions of the pre‐event floodplain. Along the investigated (unconfined or partly confined) streams (total investigated length of 93.5 km), the channel width after the flood was up to about 20 times the channel width before the event. The study has shown that a synergic use of different methods and types of evidence provides fundamental information for characterizing and understanding the geomorphic effects of intense flood events. The prediction of geomorphic response to a flood event is still challenging and many limitations exist; however a robust geomorphological analysis can contribute to the identification of the most critical reaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
H. S. Kim  S. Lee 《水文研究》2014,28(13):4023-4041
This study aimed to evaluate the effectiveness of the regionalization method on the basis of a combination of a parsimonious model structure and a multi‐objective calibration technique. For this study, 12 gauged catchments in the Republic of Korea were used. The parsimonious model structure, requiring minimal input data, was used to avoid adverse effects arising from model complexity, over‐parameterization and data requirements. The IHACRES rainfall‐runoff model was applied to represent the dynamic response characteristics of catchments in Korea. A multi‐objective approach was adopted to reduce the predictive uncertainty arising from the calibration of a rainfall‐runoff model, by increasing the amount of information retrieved from the available data. The regional relationships (or models) between the model parameters and the catchment attributes were established via a multiple regression approach, incorporating correlation analysis and stepwise regression on linear and logarithmic scales. The impacts of the parameters, calibrated by the multi‐objective approach, on the adequacy of regional relationships were assessed by comparison with impacts obtained by the single‐objective approach. The regional relationships were well defined, despite limited available data. The drainage area, the effective soil depth, the mean catchment slope and the catchment gradient appeared to be the main factors for describing the hydrologic response characteristics in the areas studied. The overall model performance of the regional models based on the multi‐objective approach was good, producing reasonable results for high and low flows and for the overall water balance, simultaneously. The regional models based on the single‐objective approach yielded accurate predictions in high flows but showed limited predictive capability for low flows and the overall water balance. This was due to the optimal model parameter estimates when using a single‐objective measure. The parameters calibrated by the single‐objective approach decreased the predictability of the regional models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Two years of eddy covariance measurements of above- and below-canopy carbon fluxes and static opaque chamber and gas chromatography technique measurements of soil respiration for three treatments (bare soil, soil litterfall, soil litterfall seedling) were carried out in a tropical seasonal rain forest. In addition, data of photosynthesis of dominant tree species and seedlings, leaf area index, litter production and decomposing speed, soil moisture, soil temperature and photosynthetic photon flux density within the forest were all measured concurrently. Data from January 2003 to December 2004 are used to present annual variability of carbon flux and relationships between carbon flux and impact factors. The results show that carbon flux of this forest presented unusual tendency of annual variation; above-canopy carbon fluxes were negative in the dry season (November-April) and mainly positive in the rainy season, but overall the forest is a carbon sink. Carbon flux has obviously diurnal variation in this tropical seasonal rain forest. Above-canopy carbon fluxes were negative in the daytime and absolute values were larger in the dry season than that in the rainy season, causing the forest to act as a carbon sink; at night, carbon fluxes were mainly positive, causing the forest to act as a carbon source. Dominant tree species have greater photosynthesis capability than that of seedlings, which have a great effect on above-canopy carbon flux. There was a significant correlation between above-canopy carbon flux and rate of photosynthesis of tree species. There was also a significant correlation between above-canopy carbon flux and rate of photosynthesis of seedlings; however, the below-canopy carbon flux was only significantly correlated with rate of photosynthesis of seedlings during the hot-dry season. Soil respiration of the three treatments displayed a markedly seasonal dynamic; in addition, above-canopy carbon fluxes correlated well with soil respiration, litterfall production, litterfall decomposition rate, precipitation, and soil moisture and temperature. A primary statistical result of this study showed that above-canopy carbon flux in this forest presented carbon source or sink effects in different seasons, and it is a carbon sink at the scale of a year.  相似文献   

15.
The Pantanal wetland is one of the least explored regions of South America. It is characterized by an outstanding flora and fauna adapted to a seasonal flood pulse controlled by a dry and a wet season within each year. The resulting inundation covers in average an area of approximately 150 000 km2 and is seen as the most important driver for ecological integrity. Evaporation from the large floodplain is supposed to influence the climate of the whole continent. The regional groundwater is connected to the surface water and plays an important role for the characteristic flooding regime by regulating the wetland's water table. The water balance assessment of the wetland and the internal water exchange between surface and groundwater is therefore of high relevance for the conservation of the Pantanal biodiversity. Despite of its importance, water balance studies including groundwater–surface water interactions based on field data are rarely undertaken. This is mainly due to the remoteness and difficulty in accessing this area, which results in lack of data. In our study, we developed a new tracer‐based model to simulate the spatio–temporal surface and subsurface fluxes for a range of water bodies. The model was able to simulate these fluxes considering a dynamic simulation of inflow and outflow using a newly collected 2‐year dataset of water levels, stable water isotopes and chloride collected from several water bodies in the northern Pantanal region. Quantitative differences between water bodies according to their location in the floodplain were determined by the flooding regime and connectivity as well as site‐specific characteristics, such as hydraulic conductivity and water depth. Our model simulated water balance fluxes with a Nash–Sutcliffe efficiency of 0.61, whereas it simulated stable water isotopic compositions better than chloride. We present the first study based on field data for the Pantanal, which is able to quantify water balances fluxes. Because their representation in global climate and land cover products is insufficient, our simulation results are valuable for validating large‐scale models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Geothermal reservoirs are usually located at a depth range of 2 to 5 km, so to efficiently utilize such resources an advanced prospecting method is needed to detect these deep geologic structures. This study aimed to three-dimensionally characterize geothermal reservoirs by a combination of Magnetotelluric (MT) survey, inversion analysis of apparent resistivity, and interpolation of the resistivity data obtained. The western side of Mt. Aso crater, southwest Japan, was chosen as the case study area. Three hot springs exist there and a fault is assumed to go in the direction connecting them. A MT survey was carried out at 26 sites and the data processed by a remote reference method to reduce artificial noises. Based on skewness and Mohr circle analyses of the impedance tensor, the local geologic structure at each site could be approximated as horizontally layered and therefore, a one-dimensional inversion analysis was applied to the MT raw data. The resultant resistivity column data were then interpolated by the three-dimensional optimization principle method. The resistivity distributions obtained clarified continuous conductors with especially low resistivity (less than 10 Ω·m) at the hot springs along the fault. Because the resistivity decreases largely with an abundance of clay minerals, the conductors could be considered to correspond with the cap rocks. Thus, two geothermal reservoirs, whose shapes were estimated to be pillar, were detected under the cap rocks in an elevation range of − 1000 to − 3000 m. By comparing the resistivity distributions with the temperature distributions based on fluid-flow calculations at a steady state using FEM, the validity of the location and dimension of the estimated reservoirs were confirmed.  相似文献   

17.
Metamorphic rocks experience change in the mode of deformation from ductile flow to brittle failure during their exhumation. We investigated the spatial variation of phengite K–Ar ages of pelitic schist of the Sambagawa metamorphic rocks (sensu lato) from the Saruta River area, central Shikoku, to evaluate if those ages are disturbed by faults or not. As a result, we found that these ages change by ca 5 my across the two boundaries between the lower‐garnet and albite–biotite, and the albite–biotite and upper‐garnet zones. These spatial changes in phengite K–Ar ages were perhaps caused by truncation of the metamorphic layers by large‐scale normal faulting at D2 phase under the brittle‐ductile transition conditions (ca 300°C) during exhumation, because an actinolite rock was formed along a fault near the former boundary. Assuming that the horizontal metamorphic layers and a previously estimated exhumation rate of 1 km/my before the D2 phase, the change of 5 my in phengite K–Ar ages is converted to a displacement of about 10 km along the north‐dipping, low‐angle normal fault documented in the previous study. Phengite 40Ar–39Ar ages (ca 85 to 78 Ma) in the actinolite rock could be reasonably comparable to the phengite K–Ar ages of the surrounding non‐faulted pelitic schist, because the K–Ar ages of pelitic schist could have been also reset at temperatures close to the brittle–ductile transition conditions far below the closure temperature for thermal retention of argon in phengite (about 500–600°C).  相似文献   

18.
The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号