首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to clarify the time relation of the expansion of a gas pocket and failure of its overlying plug of lava during Vulcanian eruptions, infrasound records and video images of the Vulcanian eruption that occurred at Sakurajima volcano on January 2, 2007 were analyzed with respect to their origin times. Weak (≤3 Pa) and slowly increasing air pressure preceded the impulsive compression phase by 0.25–0.32 s, and a longer-period rarefaction phase of infrasound waves was recognized at all microphone stations. The velocity of the compression phase was assumed to be supersonic (ca. 400 m/s) up to 850 m above the crater bottom from other recent explosions. On the other hand, the propagation velocity of the preceding weak signal was regarded to be similar to the air sound velocity because the lack of impulsiveness is unlikely to be related to the main compression phase. Therefore, the estimated origin time of the main compression phase was delayed by 0.5–0.7 s from the preceding phase. The origin time of the preceding phase coincided with the onset of the isotropic expansion process of the pressurized gas pocket, which was obtained by the waveform inversion of the explosion earthquake. In contrast, the origin time of the main impulsive phase coincided with the time when the expansion rate reached its peak. This observation suggests that the volumetric increase of the gas pocket caused swelling of the surface of the crater bottom and its subsequent failure. When the expansion velocity exceeded a threshold level, the main impulsive compression phase radiated with a high velocity by the sudden releases of the pressurized gases. The volumetric change at the source was estimated to be 280–560 m3 from the preceding phase of the infrasound. This volume change indicates that the vertical displacement of the swelling ground was on the order of 1.0 m, assuming the radius of the lava plug was ca. 10 m.  相似文献   

2.
Vulcanian-type eruptive activity has occurred from the summit crater of Sakurajima volcano, Japan, since 1955. Over this period, harmonic tremors have commonly occurred either several hours after swarms of B-type earthquakes (herein termed HTB: Harmonic Tremor following B-type earthquake swarm) or immediately after explosive eruptions (herein termed HTE: Harmonic Tremor after an Eruption). In this study, we analyzed the spectra and particle motions of HTBs and HTEs. Both HTBs and HTEs have spectra with peaks at fundamental frequencies and higher frequencies that are integer multiples of the fundamental frequencies. The peak frequencies of HTBs remained within a certain range, whereas those of HTEs showed a gradual increase. The spectra of an HTB that occurred on 20 July 1990 had stable fundamental frequencies of 1.46–1.66 Hz and at least 9 peaks of higher modes; in contrast, the HTE that occurred 3 minutes after an explosive eruption at 11 h 15 m (JST) on 11 October 2002 showed clear frequency gliding from 0.8 to 3.7 Hz in the fundamental mode. The peak frequencies of higher modes of the HTE also showed an increase corresponding to the shift of the fundamental mode towards a higher frequency. Particle motion analysis mainly identified Rayleigh waves from the prograde elliptical motion at the deepest borehole station (HAR) and retrograde motions at the other shallower stations. Love waves were dominant at the stations north and south of the crater. The distribution patterns of Rayleigh and Love waves of HTBs are similar to those of HTEs. The nature of the dominant surface waves of both HTBs and HTEs suggest that the sources of harmonic tremors are located at a shallow depth, corresponding to a gas pocket in the uppermost part of the volcanic conduit. Differences in the temporal characteristics of the HTB and HTE spectra reflect the internal condition of the gas pocket: HTBs are associated with inflation of the conduit, whereas HTEs occur following an eruption, associated with deflationary ground deformation. HTBs are caused by resonance of the gas pocket embedded beneath the lava dome. Although HTEs occur within the open conduit, the small size of vents enables resonance within the bubbly magma conduit. The positive gliding of dominant peaks toward higher frequencies is interpreted to result from shortening of the bubbly magma conduit due to a rise in the bubble nucleation level; this rise results from the re-pressurization that accompanies the ascent of magma from deep within the reservoir.  相似文献   

3.
Sediment yields were calculated on the ?anks of Merapi and Semeru volcanoes in Java, Indonesia, using two different methods. During the ?rst year following the 22 November 1994 eruption of Merapi, a sediment yield in excess of 1·5 × 105 m3 km?2 yr?1 was calculated in the Boyong River drainage basin, based on the volumes of sediment that were trapped by ?ve check dams. At Semeru, sediment discharges were assessed in the Curah Lengkong River from direct measurements on the lahars in motion and on the most signi?cant stream?ows. The calculated rate of sediment yield during one year of data in 2000 was 2·7 × 105 m3 km?2 yr?1. Sediment yields are dominated by rain‐triggered lahars, which occur every rainy season in several drainage basins of Merapi and Semeru volcanoes, mostly during the rainy season extending from October to April. The return period of lahars carrying sediment in excess of 5 × 105 m3 is about one year in the Curah Lengkong River at Semeru. At Merapi, the volume of sediments transported by a lahar did not exceed 2·8 × 105 m3 in the Boyong River during the rainy season 1994–95. On both volcanoes, the sediments are derived from similar sources: pyroclastic‐?ow/surges deposits, rockfalls from the lava domes, and old material from the riverbed and banks. However, daily explosions of vulcanian type at Semeru provide a more continuous sediment supply than at Merapi. Therefore, sediment yields are larger at Semeru. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
We present results from a detailed analysis of seismic and infrasonic data recorded over a four day period prior to the Vulcanian eruptive event at Sakurajima volcano on May 19, 1998. Nearly one hundred seismic and infrasonic events were recorded on at least one of the nine seismic–infrasonic stations located within 3 km of the crater. Four unique seismic event types are recognized based on the spectral features of seismograms, including weak seismic tremor characterized by a 5–6 Hz peak mode that later shifted to 4–5 Hz. Long-period events are characterized by a short-duration, wide spectral band signal with an emergent, high-frequency onset followed by a wave coda lasting 15–20 s and a fundamental mode of 4.2–4.4 Hz. Values of Q for long-period events range between 10 and 22 suggesting that a gas-rich fluid was involved. Explosive events are the third seismic type, characterized by a narrow spectral band signal with an impulsive high-frequency onset followed by a 20–30 second wave coda and a peak mode of 4.0–4.4 Hz. Volcano-tectonic earthquakes are the fourth seismic type. Prior to May 19, 1998, only the tremor and explosion seismic events are found to have an infrasonic component. Like seismic tremor, infrasonic tremor is typically observed as a weak background signal. Explosive infrasonic events were recorded 10–15 s after the explosive seismic events and with audible explosions prior to May 19. On May 19, high-frequency impulsive infrasonic events occurred sporadically and as swarms within hours of the eruption. These infrasonic events are observed to be coincident with swarms of long-period seismic events. Video coverage during the seismic–infrasonic experiment recorded intermittent releases of gases and ash during times when seismic and acoustic events were recorded. The sequence of seismic and infrasonic events is interpreted as representing a gas-rich fluid moving through a series of cracks and conduits beneath the active summit crater.  相似文献   

5.
We measured quantitatively colors of volcanic ash deposits erupted from three different styles of summit activity (Strombolian activity, Vulcanian explosions and continuous ash venting activity) at Sakurajima volcano from 1974 to 1985. Colors of Strombolian ash samples have larger yellow components of their visible spectra (b? values) than those of explosion and continuous venting ash samples. Colors of explosion ash samples show larger variation in both red and yellow components of their visible spectra (a? and b? values, respectively), while colors of continuous venting ash samples are in the narrow ranges within colors of explosion ash samples. Colors of components with lower densities than 3.1 g/cm3 (groundmass and phenocrystic plagioclase) obtained by magnetic and heavy liquid separation methods are similar to the unseparated bulk ash samples. This result suggests that the color variations of ash deposits are mainly originated from the particles composed of groundmass. The particles can be classified into three different types of particles with different vesicularity and crystallinity (vesicular particle [VP], dense particle with vesicles [DPV] and dense particle without vesicles [DP]). Analytical results of component proportions, chemical compositions of groundmass glasses, ferrous iron contents and surface ferric materials show that (1) VP has larger yellow components of the visible spectrum (b? values) and high ferrous iron content, and is less crystallized than the DP and DPV, (2) DP has larger red and yellow components of its visible spectrum (a? and b? values, respectively) and involves ferric materials on the surfaces produced by oxidation process, and (3) DPV has smaller red and yellow components of its visible spectrum (a? and b? values, respectively) and involves less ferric materials on the ash surfaces. Color differences of ash deposits from three different activity styles can be explained by the different mixing ratios of VP, DPV and DP. During the Strombolian activity, the VP is a main component in the ash, which is formed from relatively less degassed and crystallized magma. In the Vulcanian explosion and continuous ash venting activity, the proportions of DPV and DP in ash are larger than that in the Strombolian activity. The highly crystallized DP may correspond to a vent cap, and DPV to a magma below the cap. The color measurements of ash deposits provide information on the pre-eruptive processes at the shallower levels of a conduit.  相似文献   

6.
The 3-month long eruption of Asama volcano in 1783 produced andesitic pumice falls, pyroclastic flows, lava flows, and constructed a cone. It is divided into six episodes on the basis of waxing and waning inferred from records made during the eruption. Episodes 1 to 4 were intermittent Vulcanian or Plinian eruptions, which generated several pumice fall deposits. The frequency and intensity of the eruption increased dramatically in episode 5, which started on 2 August, and culminated in a final phase that began on the night of 4 August, lasting for 15 h. This climactic phase is further divided into two subphases. The first subphase is characterized by generation of a pumice fall, whereas the second one is characterized by abundant pyroclastic flows. Stratigraphic relationships suggest that rapid growth of a cone and the generation of lava flows occurred simultaneously with the generation of both pumice falls and pyroclastic flows. The volumes of the ejecta during the first and second subphases are 0.21 km3 (DRE) and 0.27 km3 (DRE), respectively. The proportions of the different eruptive products are lava: cone: pumice fall=84:11:5 in the first subphase and lava: cone: pyroclastic flow=42:2:56 in the second subphase. The lava flows in this eruption consist of three flow units (L1, L2, and L3) and they characteristically possess abundant broken phenocrysts, and show extensive "welding" texture. These features, as well as ghost pyroclastic textures on the surface, indicate that the lava was a fountain-fed clastogenic lava. A high discharge rate for the lava flow (up to 106 kg/s) may also suggest that the lava was initially explosively ejected from the conduit. The petrology of the juvenile materials indicates binary mixing of an andesitic magma and a crystal-rich dacitic magma. The mixing ratio changed with time; the dacitic component is dominant in the pyroclasts of the first subphase of the climactic phase, while the proportion of the andesitic component increases in the pyroclasts of the second subphase. The compositions of the lava flows vary from one flow unit to another; L1 and L3 have almost identical compositions to those of pyroclasts of the first and second subphases, respectively, while L2 has an intermediate composition, suggesting that the pyroclasts of the first and second subphases were the source of the lava flows, and were partly homogenized during flow. The complex features of this eruption can be explained by rapid deposition of coarse pyroclasts near the vent and the subsequent flowage of clastogenic lavas which were accompanied by a high eruption plume generating pumice falls and/or pyroclastic flows.Editorial responsibility: T. Druitt  相似文献   

7.
The Filakopi Pumice Breccia (FPB) is a very well exposed, Pliocene volcaniclastic unit on Milos, Greece, and has a minimum bulk volume of 1 km3. It consists of three main units: (A) basal lithic breccia (4–8 m) mainly composed of angular to subangular, andesitic and dacitic clasts up to 2.6 m in diameter; (B) very thickly bedded, poorly sorted pumice breccia (16–17 m); and (C) very thick, reversely graded, grain-supported, coarse pumice breccia (6.5–20 m), at the top. The depositional setting is well constrained as shallow marine (up to a few hundred metres) by overlying fossiliferous and bioturbated mudstone. This large volume of fine pumice clasts is interpreted to be the product of an explosive eruption from a submarine vent because: (1) pumice clasts are the dominant component; (2) the coarse pumice clasts (>64 mm) have complete quenched margins; (3) very large (>1 m) pumice clasts are common; (4) overall, the formation shows good hydraulic sorting; and (5) a significant volume of ash was deposited together with the coarsest pyroclasts.The bed forms in units A and B suggest deposition from lithic-rich and pumiceous, respectively, submarine gravity currents. In unit C, the coarse (up to 6.5 m) pumice clasts are set in matrix that grades upwards from diffusely stratified, fine (1–2 cm) pumice clasts at the base to laminated shard rich mud at the top. The coarse pumice clasts in unit C were settled from suspension and the framework was progressively infilled by fine pumice clasts from waning traction currents and then by water-settled ash. The FPB displays important features of the products of submarine explosive eruptions that result from the ambient fluid being seawater, rather than volcanic gas or air. In particular, submarine pyroclastic deposits are characterised by the presence of very coarse juvenile pumice clasts, pumice clasts with complete quenched rims, and good hydraulic sorting.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: J. Donelly-Nolan  相似文献   

8.
The Milos volcanic field includes a well-exposed volcaniclastic succession which records a long history of submarine explosive volcanism. The Bombarda volcano, a rhyolitic monogenetic center, erupted ∼1.7 Ma at a depth <200 m below sea level. The aphyric products are represented by a volcaniclastic apron (up to 50 m thick) and a lava dome. The apron is composed of pale gray juvenile fragments and accessory lithic clasts ranging from ash to blocks. The juvenile clasts are highly vesicular to non-vesicular; the vesicles are dominantly tube vesicles. The volcaniclastic apron is made up of three fades: massive to normally graded pumice-lithic breccia, stratified pumice-lithic breccia, and laminated ash with pumice blocks. We interpret the apron beds to be the result of water-supported, volcaniclastic mass-How emplacement, derived directly from the collapse of a small-volume, subaqueous eruption column and from syn-eruptive, down-slope resedimentation of volcaniclastic debris. During this eruptive phase, the activity could have involved a complex combination of phreatomagmatic explosions and minor submarine effusion. The lava dome, emplaced later in the source area, is made up of flow-banded lava and separated from the apron by an obsidian carapace a few meters thick. The near-vertical orientation of the carapace suggests that the dome was intruded within the apron. Remobilization of pyroclastic debris could have been triggered by seismic activity and the lava dome emplacement. Published online: 30 January 2003 Editorial responsibility: J. McPhie  相似文献   

9.
Some months prior to the 1995 eruption of Mt Ruapehu (New Zealand), a series of shallow earthquake swarms occurred about 15–20 km west of the summit of Ruapehu. Several earthquakes in these swarms were felt, and the largest event was ML 4.8. Crustal earthquakes of ML≥3.0 within 20 km of the summit of Ruapehu have been rather uncommon in recent years. Furthermore, the two periods of strongest activity were both just before times when the temperature of Crater Lake showed rapid increases. The second of these rapid heating phases was immediately followed by increases in the Mg2+ ion concentration in Crater Lake, indicating that chemical interactions were occurring between fresh magmatic material and the lake water. The coincidence between seismicity and lake changes suggested a link with the following eruption. A 1-D simultaneous inversion to locate the earthquakes more accurately showed that most of the earthquakes fell into three spatial clusters, each cluster having a small horizontal cross-section. The predominant depth was about 10–16 km. The b-value of this swarm was 0.74, quite compatible with ordinary tectonic earthquakes. Each cluster of earthquakes lies close to the normal Raurimu Fault which runs predominantly north–south to the west of Ruapehu, with an east-trending branch splaying off near its northern end (see Fig. 1b). Composite focal mechanisms of events in the two more southern clusters are oblique-normal, while the other cluster to the north has an oblique-reverse mechanism. The two oblique-normal mechanisms suggest that extension has occurred on part of the fault. This stress pattern was also observed in the focal mechanism solutions of events that occurred after the eruption, when a denser network of portable seismographs covered the region. Although we cannot definitely connect the occurrence of these swarms to the eruptions later in 1995, there is a strong suggestion that the seismicity was connected to the process of magma movement, which temperature and chemical changes in Crater Lake suggest was occurring during the first half of 1995.  相似文献   

10.
During the early part of a seismic swarm preceding eruption and caldera formation at Miyakejima Volcano, discoloured sea surfaces were observed 1.5 km off the western coast of Miyakejima on 27 June 2000. A later survey of the area using a multi-beam side scan sonar and a remotely operated small submarine revealed four craters of 20–30 m diameter aligned east-west in a 100×10–30 m area on the seafloor, with hot water at 140°C being released from one of the centres. Each crater consists of submarine spatter overlain in part by scoria lapilli. Dredged spatter from the craters was fresh, and there was no evidence of activity of marine organisms on the spatter surface, indicating that the discoloured sea surface resulted from magmatic eruption on the seafloor. This eruption occurred when a westward-propagating seismic swarm, initiated beneath Miyakejimas summit, passed through the area. Finding new magma on the seafloor demonstrates that this seismic swarm was associated with intruding magma, moving outward from beneath Miyakejima. Submarine spatter shows flattened shapes with a brittle crust formed by cooling in water, and its composition is aphyric andesite of 54 wt% SiO2. The spatter is similar in whole rock and mineral composition to spatter erupted in 1983. However, the wide range of Cl in melt inclusions in plagioclase of the 27 June submarine spatter shows that it is not simply a remnant of the 1983 magma, which has only high Cl melt inclusions in plagioclase. The mixed character of melt inclusions suggests involvement of a magma with low Cl melt inclusions. The magma erupted explosively on 18 August from Miyakejimas summit, considered as the second juvenile magma in this eruption, contains low Cl melt inclusions in plagioclase. Based on these observations and the eruption sequence, we present the following model: (1) A shallow magma chamber was filled with a remnant of 1983 magma that had evolved to a composition of 54–55 wt% SiO2. (2) Injection of the 18 August magma into this chamber generated a mixed magma having a wide range of Cl in melt inclusions contained plagioclase. The magma mixing might have occurred shortly before the submarine eruption and could have been a trigger for the initiation of the removal of magma from the chamber as an extensive dyke, which eventually led to caldera subsidence.Editorial responsibility: S Nakada, T Druitt  相似文献   

11.
The 22 km3 (DRE) 1.8 ka Taupo eruption ejected chemically uniform rhyolite in a wide range of eruptive styles and intensities. The 7 eruptive units include the ‘type examples’ of phreatoplinian (units 3 and 4) and ultraplinian fall (unit 5) deposits, and low-aspect-ratio ignimbrite (unit 6). Contrasts in bulk vesicularity, vesicle (and microlite) number densities and the size distributions of bubbles (and crystals) in the Taupo ejecta can be linked to the influence of shallow conduit processes on volatile exsolution and gas escape, before and during eruption, rather than changes in pre-eruptive chemistry. Existing work has modeled the individual phases of this complex eruption but not fully explained the abrupt shifts in style/intensity that occur between phases. We link these rapid transitions to changes in vent position, which permitted contrasts in storage, conduit geometry, and magma ascent history.  相似文献   

12.
An earthquake swarm struck the North Tanzania Divergence, East African Rift over a 2 month period between July and September 2007. It produced approximately 70 M > 4 earthquakes (peak magnitude Mw 5.9), and extensive surface deformation, concurrent with eruptions at the nearby Oldoinyo Lengai volcano. The spatial and temporal evolution of the entire deformation event was resolved by Interferometric Synthetic Aperture Radar (InSAR) observations, owing to a particularly favorable acquisition programming of the Envisat and ALOS satellites, and was verified by detailed ground observations. Elastic modeling based on the InSAR measurements clearly distinguishes between normal faulting, which dominated during the first week of the event, and intermittent episodes of dike propagation, oblique dike opening and dike-induced faulting during the following month. A gradual decline in the intensity of deformation occurred over the final weeks. Our observations and modeling suggest that the sequence of events was initiated by pressurization of a deep-seated magma chamber below Oldoinyo Lengai which opened the way to lateral dike injection, and dike-induced faulting and seismicity. As dike intrusion terminated, silicate magma ascended the volcano conduit, reacted with the carbonatitic magma, and set off a major episode of explosive ash eruptions producing mixed silicate-carbonatitic ejecta. The rise of the silicate magma within the volcano conduit is attributed to bubble growth and buoyancy increase in the magma chamber either due to a temporary pressure drop after the termination of the diking event, or due to the dynamic effects of seismic wave passage from the earthquake swarm. Similar temporal associations between earthquake swarms and major explosive ash eruptions were observed at Oldoinyo Lengai over the past half century.  相似文献   

13.
Pyroclastic flows from the 1991 eruption of Unzen volcano,Japan   总被引:1,自引:0,他引:1  
Pyroclastic flows from Unzen were generated by gravitational collapse of the growing lava dome. As soon as the parental lobe failed at the edge of the dome, spontaneous shattering of lava occurred and induced a gravity flow of blocks and finer debris. The flows had a overhanging, tongue-like head and cone- or rollershaped vortices expanding outward and upward. Most of the flows traveled from 1 to 3 km, but some flows reached more than 4 km, burning houses and killing people in the evacuated zone of Kita-kamikoba on the eastern foot of the volcano. The velocities of the flows ranged from 15 to 25 m/s on the gentle middle flank. Observations of the flows and their deposits suggest that they consisted of a dense basal avalanche and an overlying turbulent ash cloud. The basal avalanche swept down a topographic low and formed to tongue-like lobe having well-defined levees; it is presumed to have moved as a non-Newtonian fluid. The measured velocities and runout distances of the flows can be matched to a Bingham model for the basal avalanche by the addition of turbulent resistance. The rheologic model parameters for the 29 May flow are as follows: the density is 1300 kg/m3, the yield strength is 850 Pa, the viscosity is 90 Pa s, and the thickness of the avalanche is 2 m. The ash cloud is interpreted as a turbulent mixing layer above the basal avalanche. The buoyant portions of the cloud produced ash-fall deposits, whereas the dense portions moved as a surge separated from the parental avalanche. The ash-cloud surges formed a wide devastated zone covered by very thin debris. The initial velocities of the 3 June surges, when they detached from avalanches, are determined by the runout distance and the angle of the energy-line slope. A comparison between the estimated velocities of the 3 June avalanches and the surges indicates that the surges that extended steep slopes along the avalanche path, detached directly from the turbulent heads of the avalanches. The over-running surge that reached Kita-Kamikoba had an estimated velocity higher than that of the avalanche; this farther-travelled surge is presumed to have been generated by collapse of a rising ash-cloud plume.  相似文献   

14.
Karthala volcano is a basaltic shield volcano with an active hydrothermal system that forms the southern two-thirds of the Grande Comore Island, off the east coat of Africa, northwest of Madagascar. Since the start of volcano monitoring by the local volcano observatory in 1988, the July 11th, 1991 phreatic eruption was the first volcanic event seismically recorded on this volcano, and a rare example of a monitored basaltic shield. From 1991 to 1995 the VT locations, 0.5<Ml<4.3, show a crack shaped pattern (3 km long, 1 km wide) within the summit caldera extending at depth from –2 km to +2 km relative to sea level. This N-S elongated pattern coincides with the direction of the regional maximum horizontal stress as deduced from regional focal mechanism solutions. This brittle signature of the damage associated with the 1991 phreatic eruption is a typical pattern of the seismicity induced by controlled fluid injections such as those applied at geothermal fields, in oil and gas recovery, or for stress measurements. It suggests the 1991 phreatic eruption was driven by hydraulic fracturing induced by forced fluid flow. We propose that the extremely high LP and VT seismicity rates, relative to other effusive volcanoes, during the climax of the 1991 phreatic explosion, are due to the activation of the whole hydrothermal system, as roughly sized by the distribution of VT hypocenters. The seismicity rate in 1995 was still higher than the pre-eruption seismicity rate, and disagrees with the time pattern of thermo-elastic stress readjustment induced by single magma intrusions at basaltic volcanoes. We propose that it corresponds to the still ongoing relaxation of pressure heterogeneity within the hydrothermal system as suggested by the few LP events that still occurred in 1995.Editorial responsibility: H Shinohara  相似文献   

15.
Guagua Pichincha, located 14 km west of Quito, Ecuador, is a stratovolcano bisected by a horseshoe-shaped caldera. In 1999, after some months of phreatic activity, Guagua Pichincha entered into an eruptive period characterized by the extrusion of several dacitic domes, vulcanian eruptions, and pyroclastic flows. We estimated the three-dimensional (3-D) P-wave velocity structure beneath Guagua Pichincha using a tomographic inversion method based on finite-difference calculations of first-arrival times. Hypocenters of volcano-tectonic (VT) earthquakes and long-period (LP) events were relocated using the 3-D P-wave velocity model. A low-velocity anomaly exists beneath the caldera and may represent an active volcanic conduit. Petrologic analysis of eruptive products indicates a magma storage region beneath the caldera, having a vertical extent of 7–8 km with the upper boundary at about sea level. This zone coincides with the source region of deeper VT earthquakes, indicating that a primary magma body exists in this region. LP swarms occurred in a cyclic pattern synchronous with ground deformation during magma extrusions. The correlation between seismicity and ground deformation suggests that both respond to pressure changes caused by the cyclic eruptive behavior of lava domes.  相似文献   

16.
The Hekla eruption cloud on 26–27 February 2000 was the first volcanic cloud to be continuously and completely monitored advecting above Iceland, using the C-band weather radar near the Keflavík international airport. Real-time radar observations of the onset, advection, and waning of the eruption cloud were studied using time series of PPI (plan-position indicator) radar images, including VMI normal, Echotop, and Cappi level 2 displays. The reflectivity of the entire volcanic cloud ranges from 0 to >60 dBz. The eruption column above the vent is essentially characterised by VMI normal and Cappi level 2 values, >30 dBz, due to the dominant influence of lapilli and ash (tephra) on the overall reflected signal. The cloud generated by the column was advected downwind to the north-northeast. It is characterised by values between 0 and 30 dBz, and the persistence of these reflections likely result from continuing water condensation and freezing on ash particles. Echotop radar images of the eruption onset document a rapid ascent of the plume head with a mean velocity of ~30 to 50 m s–1, before it reached an altitude of ~11–12 km. The evolution of the reflected cloud was studied from the area change in pixels of its highly reflected portions, >30 dBz, and tied to recorded volcanic tremor amplitudes. The synchronous initial variation of both radar and seismic signals documents the abrupt increase in tephra emission and magma discharge rate from 18:20 to 19:00 UTC on 26 February. From 19:00 the >45 dBz and 30–45 dBz portions of the reflected cloud decrease and disappear at about 7 and 10.5 h, respectively, after the eruption began, indicating the end of the decaying explosive phase. The advection and extent of the reflected eruption cloud were compared with eyewitness accounts of tephra fall onset and the measured mass of tephra deposited on the ground during the first 12 h. Differences in the deposit map and volcanic cloud radar map are due to the fact that the greater part of the deposit originates by fallout off the column margins and from the base of the cloud followed by advection of falling particle in lower level winds.Editorial responsibility: P. Mouginis-Mark  相似文献   

17.
The Fontana Lapilli deposit was erupted in the late Pleistocene from a vent, or multiple vents, located near Masaya volcano (Nicaragua) and is the product of one of the largest basaltic Plinian eruptions studied so far. This eruption evolved from an initial sequence of fluctuating fountain-like events and moderately explosive pulses to a sustained Plinian episode depositing fall beds of highly vesicular basaltic-andesite scoria (SiO2 > 53 wt%). Samples show unimodal grain size distribution and a moderate sorting that are uniform in time. The juvenile component predominates (> 96 wt%) and consists of vesicular clasts with both sub-angular and fluidal, elongated shapes. We obtain a maximum plume height of 32 km and an associated mass eruption rate of 1.4 × 108 kg s−1 for the Plinian phase. Estimates of erupted volume are strongly sensitive to the technique used for the calculation and to the distribution of field data. Our best estimate for the erupted volume of the majority of the climactic Plinian phase is between 2.9 and 3.8 km3 and was obtained by applying a power-law fitting technique with different integration limits. The estimated eruption duration varies between 4 and 6 h. Marine-core data confirm that the tephra thinning is better fitted by a power-law than by an exponential trend.  相似文献   

18.
Usu volcano (Hokkaido, Japan) is a dacitic volcano, known for its high production rate of lava domes and crypto-domes. It is thus a good target to study processes of volcanic dome evolution (upheaval and/or relaxation). We carried out repeated GPS and microgravity surveys on the three most recent domes of Mt. Usu (1910: Meiji Shinzan; 1943–1945: Showa-Shinzan and 1977–1982: Usu-Shinzan). The repeat period was 1 to 2 months and extended from October 1996 to June 1997. We also compare new data with results from former studies. More than 20 years after the start of Usu-Shinzan dome growth, there is still subsidence at a maximum rate of about 7 to 8 cm/year. The reasons for this subsidence are discussed. Repeated gravity surveys revealed an increase of gravity on the domes (about 60±10 microgal/year for Usu-Shinzan, about 15 microgal at Showa-Shinzan and 10 to 20 microgal for Meiji-shinzan); this gravity increase exceeds that expected due to subsidence. We discuss and interpret the excess gravity change in terms of a density increase in the edifice, caused by a combination of processes (contraction of the edifice, water level change, devesiculisation, cooling and magma intrusion). Quantification of these processes at Usu volcano may help to understand the processes of evolution at domes on other volcanoes such as Merapi (Indonesia), Unzen (Japan) or Montserrat (West Indies).  相似文献   

19.
Analysis of ground-deformation data obtained at and around Sakurajima volcano during the 1914 eruption indicates that the deformation may be interpreted by assuming a model with two pressure sources, one shallow (about 2 km deep) and vertically directive and the other deep (about 8 km deep) and obliquely, directly beneath the volcano. This model is reasonable from the viewpoint of the volcanic processes.The local upheaval near the centers of eruption has scarcely recovered because it surpassed the elastic limit. The recovery of the regional depression after the eruption can be interpreted as pressure accumulation beneath the volcano. It may be concluded that the center of pressure would remain at the deeper source beneath the volcano, but that the pressure would change, resulting in surface deformation. The depression and its recovery suggest the presence of a pressure focus or a ‘magma reservoir’ beneath the volcano.  相似文献   

20.
Historical sources have recorded earthquake shocks, their effects and difficulties that local inhabitants experienced before the AD 79 Pompeii eruption. Archaeological studies pointed out the effects of such seismicity, and have also evidenced that several water crises were occurring at Pompeii in that period. Indeed numerous sources show that, at the time of eruption, and probably some time before, the civic aqueduct, having ceased to be supplied by the regional one, was out of order and that a new one was being built. Since Roman aqueducts were usually built with a recommended minimum mean slope of 20 cm/km and Pompeii's aqueduct sloped from the nearby Apennines toward the town, this slope could have been easily cancelled by uplift that occurred in the area even if this was only moderate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号