共查询到4条相似文献,搜索用时 15 毫秒
1.
Koki Aizawa Yasuo Ogawa Masaaki Mishina Kosuke Takahashi Shintaro Nagaoka Nobumasa Takagi Shin'ya Sakanaka Takuya Miura 《Journal of Volcanology and Geothermal Research》2009,187(1-2):131-139
Magnetotelluric (MT) measurements were conducted at Iwate volcano, across the entirety of the mountain, in 1997, 1999, 2003, 2006, and 2007. The survey line was 18 km in length and oriented E–W, comprising 38 measurements sites. Following 2D inversion, we obtained the resistivity structure to a depth of 4 km. The surface resistive layer (~ several hundreds of meters thick) is underlain by extensive highly conductive zones. Based on drilling data, the bottom of the highly conductive zone is interpreted to represent the 200 °C isotherm, below which (i.e., at higher temperatures) conductive clay minerals (smectite) are rare. The high conductivity is therefore mainly attributed to the presence of hydrothermally altered clay. The focus of this study is a resistive body beneath the Onigajo (West-Iwate) caldera at depths of 0.5–3 km. This body appears to have impeded magmatic fluid ascent during the 1998 volcanic unrest, as inferred from geodetic data. Both tectonic and low-frequency earthquakes are sparsely distributed throughout this resistive body. We interpret this resistive body as a zone of old, solidified intrusive magma with temperatures in excess of 200 °C. Given that a similar relationship between a resistive body and subsurface volcanic activity has been suggested for Asama volcano, structural controls on subsurface magmatic fluid movement may be a common phenomenon at shallow levels beneath volcanoes. 相似文献
2.
Anthony Finizola Jean-Franois Lnat Orlando Macedo Domingo Ramos Jean-Claude Thouret Francesco Sortino 《Journal of Volcanology and Geothermal Research》2004,135(4):216
One of the seven potentially active andesite stratovolcanoes in southern Peru, Misti (5822 m), located 17 km northeast and 3.5 km above Arequipa, represents a major threat to the population (900,000 inhabitants). Our recent geophysical and geochemical research comprises an extensive self-potential (SP) data set, an audio–magnetotelluric (AMT) profile across the volcano and CO2 concentrations in the soil along a radial profile. The SP survey is the first of its kind in providing a complete mapping of a large andesitic stratovolcano 20 km in diameter. The SP mapping enables us to analyze the SP signature associated with a subduction-related active volcano.The general SP pattern of Misti is similar to that of most volcanoes with a hydrogeologic zone in the lower flanks and a hydrothermal zone in the upper central area. A quasi-systematic relationship exists between SP and elevation. Zones with constant SP/altitude gradients (Ce) are observed in both hydrogeologic (negative Ce) and hydrothermal (positive Ce) zones. Transition zones between the different Ce zones, which form a concentric pattern around the summit, have been interpreted in terms of lateral heterogeneities in the lithology. The highest amplitudes of SP anomalies seem to coincide with highly resistive zones. The hydrothermal system 6 km in diameter, which extends over an area much larger than the summit caldera, may be constrained by an older, concealed collapse caldera. A sealed zone has apparently developed through alteration in the hydrothermal system, blocking the migration of CO2 upward. Significant CO2 emanations are thus observed on the lower flanks but are absent above the hydrothermal zone. 相似文献
3.
Hiromasa Ishikawa Tsukasa Ohba Hirokazu Fujimaki 《Journal of Volcanology and Geothermal Research》2007
The ratio of 87Sr/86Sr was measured from different water samples of thermal/mineral (hot spring as well as crater lake) and meteoric origins, in order to specify the location and to verify the detailed model of a volcano-hydrothermal system beneath Zao volcano. The ratio showed a trimodal distribution for the case of thermal/mineral water: 0.7052–0.7053 (Type A, Zao hot spring), 0.7039–0.7043 (Type B, Okama crater lake and Shin-funkiko hot spring), and 0.7070–0.7073 (Type C, Gaga, Aone, and Togatta hot springs), respectively. However, in comparison, the ratio was found to be higher for meteoric waters (0.7077–0.7079). The water from the central volcanic edifice (Type B) was found to be similar to that of nearby volcanic rocks in their Sr isotopic ratio. This indicates that the Sr in water was derived from shallow volcanic rocks. The 87Sr/86Sr ratio for water from the Zao hot spring (Type A) was intermediate between those of the pre-Tertiary granitic and the Quaternary volcanic rocks, thus suggesting that the water had reacted with both volcanic and granitic rocks. The location of the vapor–liquid separation was determined as the boundary of the pre-Tertiary granitic and the Quaternary volcanic rocks by comparing the results of this strontium isotopic study with those of Kiyosu and Kurahashi [Kiyosu, Y., Kurahashi, M., 1984. Isotopic geochemistry of acid thermal waters and volcanic gases from Zao volcano in Japan. J. Volcanol. Geotherm. Res. 21, 313–331.]. 相似文献
4.
The Active Crater at Rincón de la Vieja volcano, Costa Rica, reaches an elevation of 1750 m and contains a warm, hyper-acidic crater lake that probably formed soon after the eruption of the Rio Blanco tephra deposit approximately 3500 years before present. The Active Crater is buttressed by volcanic ridges and older craters on all sides except the north, which dips steeply toward the Caribbean coastal plains. Acidic, above-ambient-temperature streams are found along the Active Crater's north flank at elevations between 800 and 1000 m. A geochemical survey of thermal and non-thermal waters at Rincón de la Vieja was done in 1989 to determine whether hyper-acidic fluids are leaking from the Active Crater through the north flank, affecting the composition of north-flank streams.Results of the water-chemistry survey reveal that three distinct thermal waters are found on the flanks of Rincón de la Vieja volcano: acid chloride–sulfate (ACS), acid sulfate (AS), and neutral chloride (NC) waters. The most extreme ACS water was collected from the crater lake that fills the Active Crater. Chemical analyses of the lake water reveal a hyper-acidic (pH0) chloride–sulfate brine with elevated concentrations of calcium, magnesium, aluminum, iron, manganese, copper, zinc, fluorine, and boron. The composition of the brine reflects the combined effects of magmatic degassing from a shallow magma body beneath the Active Crater, dissolution of andesitic volcanic rock, and evaporative concentration of dissolved constituents at above-ambient temperatures. Similar cation and anion enrichments are found in the above-ambient-temperature streams draining the north flank of the Active Crater. The pH of north-flank thermal waters range from 3.6 to 4.1 and chloride:sulfate ratios (1.2–1.4) that are a factor of two greater than that of the lake brine (0.60). The waters have an ACS composition that is quite different from the AS and NC thermal waters that occur along the southern flank of Rincón de la Vieja.The distribution of thermal water types at Rincón de la Vieja strongly indicates that formation of the north-flank ACS waters is not due to mixing of shallow, steam-heated AS water with deep-seated NC water. More likely, hyper-acidic brines formed in the Active Crater area are migrating through permeable zones in the volcanic strata that make up the Active Crater's north flank. Dissolution and shallow subsurface alteration of north-flank volcanoclastic material by interaction with acidic lake brine, particularly in the more permeable tephra units, could weaken the already oversteepened north flank of the Active Crater. Sector collapse of the Active Crater, with or without a volcanic eruption, represents a potential threat to human lives, property, and ecosystems at Rincón de la Vieja volcano. 相似文献