首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tephrostratigraphy for Erebus volcano is presented, including tephra composition, stratigraphy, and eruption mechanism. Tephra from Erebus were collected from glacial ice and firn. Scanning electron microscope images of the ash morphologies help determine their eruption mechanisms The tephra resulted mainly from phreatomagmatic eruptions with fewer from Strombolian eruptions. Tephra having mixed phreatomagmatic–Strombolian origins are common. Two tephra deposited on the East Antarctic ice sheet, ~ 200 km from Erebus, resulted from Plinian and phreatomagmatic eruptions. Glass droplets in some tephra indicate that these shards were produced in both phreatomagmatic and Strombolian eruptions. A budding ash morphology results from small spheres quenched during the process of hydrodynamically splitting off from a parent melt globule. Clustered and rare single xenocrystic analcime crystals, undifferentiated zeolites, and clay are likely accidental clasts entrained from a hydrothermal system present prior to eruption. The phonolite compositions of glass shards confirm Erebus volcano as the eruptive source. The glasses show subtle trends in composition, which correlate with stratigraphic position. Trace element analyses of bulk tephra samples show slight differences that reflect varying feldspar contents.  相似文献   

2.
The Quaternary Herchenberg composite tephra cone (East Eifel, FR Germany) with an original bulk volume of 1.17·107 m3 (DRE of 8.2·106 m3) and dimensions of ca. 900·600·90 m (length·width·height) erupted in three main stages: (a) Initial eruptions along a NW-trending, 500-m-long fissure were dominantly Vulcanian in the northwest and Strombolian in the southeast. Removal of the unstable, underlying 20-m-thick Tertiary clays resulted in major collapse and repeated lateral caving of the crater. The northwestern Lower Cone 1 (LC1) was constructed by alternating Vulcanian and Strombolian eruptions. (b) Cone-building, mainly Strombolian eruptions resulted in two major scoria cones beginning initially in the northwest (Cone 1) and terminating in the southeast (Cones 2 and 3) following a period of simultaneous activity of cones 1 and 2. Lapilli deposits are subdivided by thin phreatomagmatic marker beds rich in Tertiary clays in the early stages and Devonian clasts in the later stages. Three dikes intruded radially into the flanks of cone 1. (c) The eruption and deposition of fine-grained uppermost layers (phreatomagmatic tuffs, accretionary lapilli, and Strombolian fallout lapilli) presumably from the northwestern center (cone 1) terminated the activity of Herchenberg volcano. The Herchenberg volcano is distinguished from most Strombolian scoria cones in the Eifel by (1) small volume of agglutinates in central craters, (2) scarcity of scoria bomb breccias, (3) well-bedded tephra deposits even in the proximal facies, (4) moderate fragmentation of tephra (small proportions of both ash and coarse lapilli/bomb-size fraction), (5) abundance of dense ellipsoidal juvenile lapilli, and (6) characteristic depositional cycles in the early eruptive stages beginning with laterally emplaced, fine-grained, xenolith-rich tephra and ending with fallout scoria lapilli. Herchenberg tephra is distinguished from maar deposits by (1) paucity of xenoliths, (2) higher depositional temperatures, (3) coarser grain size and thicker bedding, (4) absence of glassy quenched clasts except in the initial stages and late phreatomagmatic marker beds, and (5) predominance of Strombolian, cone-building activity. The characteristics of Herchenberg deposits are interpreted as due to a high proportion of magmatic volatiles (dominantly CO2) relative to low-viscosity magma during most of the eruptive activity.  相似文献   

3.
4.
The Croscat pyroclastic succession has been analysed to investigate the transition between different eruptive styles in basaltic monogenetic volcanoes, with particular emphasis on the role of phreatomagmatism in triggering Violent Strombolian eruptions. Croscat volcano, an 11 ka basaltic complex scoria cone in the Quaternary Garrotxa Volcanic Field (GVF) shows pyroclastic deposits related both to magmatic and phreatomagmatic explosions.Lithofacies analysis, grain size distribution, chemical composition, glass shard morphologies, vesicularity, bubble-number density and crystallinity of the Croscat pyroclastic succession have been used to characterize the different eruptive styles. Eruptions at Croscat began with fissural Hawaiian-type fountaining that rapidly changed to eruption types transitional between Hawaiian and Strombolian from a central vent. A first phreatomagmatic phase occurred by the interaction between magma and water from a shallow aquifer system at the waning of the Hawaiian- and Strombolian-types stage. A Violent Strombolian explosion then occurred, producing a widespread (8 km2), voluminous tephra blanket. The related deposits are characterized by the presence of wood-shaped, highly vesicular scoriae. Glass-bearing xenoliths (buchites) are also present within the deposit. At the waning of the Violent Strombolian phase a second phreatomagmatic phase occurred, producing a second voluminous deposit dispersed over 8.4 km2. The eruption ended with a lava flow emission and consequent breaching of the western-side of the volcano. Our data suggest that the Croscat Violent Strombolian phase was related to the ascent of deeper, crystal-poor, highly vesicular magma under fast decompression rate. Particles and vesicles elongation and brittle failure observed in the wood-shaped clasts indicate that fragmentation during Violent Strombolian phase was enhanced by high strain-rate of the magma within the conduit.  相似文献   

5.
Impact of large-scale explosive eruptions largely depends on the dynamics of transport, dispersal and deposition of ash by the convective system. In fully convective eruptive columns, ejected gases and particles emitted at the vent are vertically injected into the atmosphere by a narrow, buoyant column and then dispersed by atmosphere dynamics on a regional scale. In fully collapsing explosive eruptions, ash partly generated by secondary fragmentation is carried and dispersed by broad co-ignimbrite columns ascending above pyroclastic currents. In this paper, we investigate the transport and dispersion dynamics of ash and lapillis during a transitional plinian eruption in which both plinian and co-ignimbrite columns coexisted and interacted. The 800 BP eruptive cycle of Quilotoa volcano (Ecuador) produced a well-exposed tephra sequence. Our study shows that the sequence was accumulated by a variety of eruptive dynamics, ranging from early small phreatic explosions, to sustained magmatic plinian eruptions, to late phreatomagmatic explosive pulses. The eruptive style of the main 800 BP plinian eruption (U1) progressively evolved from an early fully convective column (plinian fall bed), to a late fully collapsing fountain (dense density currents) passing through an intermediate transitional eruptive phase (fall + syn-plinian dilute density currents). In the transitional U1 regime, height of the convective plinian column and volume and runout of the contemporaneous pyroclastic density currents generated by partial collapses were inversely correlated. The convective system originated from merging of co-plinian and co-surge contributions. This hybrid column dispersed a bimodal lapilli and ash-fall bed whose grain size markedly differs from that of classic fall deposits accumulated by fully convective plinian columns. Sedimentological analysis suggests that ash dispersion during transitional eruptions is affected by early aggregation of dry particle clusters.  相似文献   

6.
Chronology and products of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:1,他引:0  
Lateral migration of magma away from Miyakejima volcanic island, Japan, generated summit subsidence, associated with summit explosions in the summer of 2000. An earthquake swarm beneath Miyakejima began on the evening of 26 June 2000, followed by a submarine eruption the next morning. Strong seismic activity continued under the sea from beneath the coast of Miyakejima to a few tens of kilometers northwest of the island. Summit eruptive event began with subsidence of the summit on 8 July and both explosions and subsidence continued intermittently through July and August. The most intense eruptive event occurred on 18 August and was vulcanian to subplinian in type. Ash lofted into the stratosphere fell over the entire island, and abundant volcanic bombs were erupted at this time. Another large explosion took place on 29 August. This generated a low-temperature pyroclastic surge, which covered a residential area on the northern coast of the island. The total volume of tephra erupted was 9.3×106 m3 (DRE), much smaller than the volume of the resulting caldera (6×108 m3). Migration of magma away from Miyakejima was associated with crustal extension northwest of Miyakejima and coincident shrinkage of Miyakejima Island itself during July–August 2000. This magma migration probably caused stoping of roof rock into the magma reservoir, generating subsurface cavities filled with hydrothermal fluid and/or magmatic foam and formation of a caldera (Oyama Caldera) at the summit. Interaction of hydrothermal fluid with ascending magma drove a series of phreatic to phreatomagmatic eruptions. It is likely that new magma was supplied to the reservoir from the bottom during waning stage of magmas migration, resulting in explosive discharge on 18 August. The 18 August event and phreatic explosions on 29 August produced a conduit system that allowed abundant SO2 emission (as high as 460 kg s–1) after the major eruptive events were over. At the time of writing, inhabitants of the island (about 3,000) have been evacuated from Miyakejima for more than 3 years.  相似文献   

7.
Since the onset of their eruptive activity within the Cañadas caldera, about 180 ka ago, Teide–Pico Viejo stratovolcanoes have mainly produced lava flow eruptions of basaltic to phonoltic magmas. The products from these eruptions partially fill the caldera, and the adjacent Icod and La Orotava valleys, to the north. Although less frequent, explosive eruptions have also occurred at these composite volcanoes. In order to assess the possible evolution Teide–Pico Viejo stratovolcanoes and their potential for future explosive activity, we have analysed their recent volcanic history, assuming that similar episodes have the highest probability of occurrence in the near future. Explosive activity during the last 35000 years has been associated with the eruption of both, mafic (basalts, tephro–phonolites) and felsic (phono–tephrites and phonolites) magmas and has included strombolian, violent strombolian and sub-plinian magmatic eruptions, as well as phreatomagmatic eruptions of mafic magmas. Explosive eruptions have occurred both from central and flank vents, ranging in size from 0.001 to 0.1 km3 for the mafic eruptions and from 0.01 to < 1 km3 for the phonolitic ones. Comparison of the Teide–Pico Viejo stratovolcanoes with the previous cycles of activity from the central complex reveals that all them follow a similar pattern in the petrological evolution but that there is a significant difference in the eruptive behaviour of these different periods of central volcanism on Tenerife. Pre-Teide central activity is mostly characterised by large-volume (1–> 20 km3, DRE) eruptions of phonolitic magmas while Teide–Pico Viejo is dominated by effusive eruptions. These differences can be explained in terms of the different degree of evolution of Teide–Pico Viejo compared to the preceding cycles and, consequently, in the different pre-eruptive conditions of the corresponding phonolitic magmas. A clear interaction between the basaltic and phonolitic systems is observed from the products of phonolitic eruptions, indicating that basaltic magmatism is the driving force of the phonolitic eruptive activity. The magmatic evolution of Teide–Pico Viejo stratovolcanoes will continue in the future with a probably tendency to produce a major volume of phonolitic magmas, with an increasing explosive potential. Therefore, the explosive potential of Teide–Pico Viejo cannot be neglected and should be considered in hazard assessment on Tenerife.  相似文献   

8.
9.
《Journal of Geodynamics》2007,43(1):118-152
The large-scale volcanic lineaments in Iceland are an axial zone, which is delineated by the Reykjanes, West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ), which is growing in length by propagation to the southwest through pre-existing crust. These zones are connected across central Iceland by the Mid-Iceland Belt (MIB). Other volcanically active areas are the two intraplate belts of Öræfajökull (ÖVB) and Snæfellsnes (SVB). The principal structure of the volcanic zones are the 30 volcanic systems, where 12 are comprised of a fissure swarm and a central volcano, 7 of a central volcano, 9 of a fissure swarm and a central domain, and 2 are typified by a central domain alone.Volcanism in Iceland is unusually diverse for an oceanic island because of special geological and climatological circumstances. It features nearly all volcano types and eruption styles known on Earth. The first order grouping of volcanoes is in accordance with recurrence of eruptions on the same vent system and is divided into central volcanoes (polygenetic) and basalt volcanoes (monogenetic). The basalt volcanoes are categorized further in accordance with vent geometry (circular or linear), type of vent accumulation, characteristic style of eruption and volcanic environment (i.e. subaerial, subglacial, submarine).Eruptions are broadly grouped into effusive eruptions where >95% of the erupted magma is lava, explosive eruptions if >95% of the erupted magma is tephra (volume calculated as dense rock equivalent, DRE), and mixed eruptions if the ratio of lava to tephra occupy the range in between these two end-members. Although basaltic volcanism dominates, the activity in historical time (i.e. last 11 centuries) features expulsion of basalt, andesite, dacite and rhyolite magmas that have produced effusive eruptions of Hawaiian and flood lava magnitudes, mixed eruptions featuring phases of Strombolian to Plinian intensities, and explosive phreatomagmatic and magmatic eruptions spanning almost the entire intensity scale; from Surtseyan to Phreatoplinian in case of “wet” eruptions and Strombolian to Plinian in terms of “dry” eruptions. In historical time the magma volume extruded by individual eruptions ranges from ∼1 m3 to ∼20 km3 DRE, reflecting variable magma compositions, effusion rates and eruption durations.All together 205 eruptive events have been identified in historical time by detailed mapping and dating of events along with extensive research on documentation of eruptions in historical chronicles. Of these 205 events, 192 represent individual eruptions and 13 are classified as “Fires”, which include two or more eruptions defining an episode of volcanic activity that lasts for months to years. Of the 159 eruptions verified by identification of their products 124 are explosive, effusive eruptions are 14 and mixed eruptions are 21. Eruptions listed as reported-only are 33. Eight of the Fires are predominantly effusive and the remaining five include explosive activity that produced extensive tephra layers. The record indicates an average of 20–25 eruptions per century in Iceland, but eruption frequency has varied on time scale of decades. An apparent stepwise increase in eruption frequency is observed over the last 1100 years that reflects improved documentation of eruptive events with time. About 80% of the verified eruptions took place on the EVZ where the four most active volcanic systems (Grímsvötn, Bárdarbunga–Veidivötn, Hekla and Katla) are located and 9%, 5%, 1% and 0.5% on the RVZ–WVZ, NVZ, ÖVB, and SVB, respectively. Source volcano for ∼4.5% of the eruptions is not known.Magma productivity over 1100 years equals about 87 km3 DRE with basaltic magma accounting for about 79% and intermediate and acid magma accounting for 16% and 5%, respectively. Productivity is by far highest on the EVZ where 71 km3 (∼82%) were erupted, with three flood lava eruptions accounting for more than one half of that volume. RVZ–WVZ accounts for 13% of the magma and the NWZ and the intraplate belts for 2.5% each. Collectively the axial zone (RVZ, WVZ, NVZ) has only erupted 15–16% of total magma volume in the last 1130 years.  相似文献   

10.
Ubinas volcano has had 23 degassing and ashfall episodes since A.D. 1550, making it the historically most active volcano in southern Peru. Based on fieldwork, on interpretation of aerial photographs and satellite images, and on radiometric ages, the eruptive history of Ubinas is divided into two major periods. Ubinas I (Middle Pleistocene >376 ka) is characterized by lava flow activity that formed the lower part of the edifice. This edifice collapsed and resulted in a debris-avalanche deposit distributed as far as 12 km downstream the Rio Ubinas. Non-welded ignimbrites were erupted subsequently and ponded to a thickness of 150 m as far as 7 km south of the summit. These eruptions probably left a small collapse caldera on the summit of Ubinas I. A 100-m-thick sequence of ash-and-pumice flow deposits followed, filling paleo-valleys 6 km from the summit. Ubinas II, 376 ky to present comprises several stages. The summit cone was built by andesite and dacite flows between 376 and 142 ky. A series of domes grew on the southern flank and the largest one was dated at 250 ky; block-and-ash flow deposits from these domes filled the upper Rio Ubinas valley 10 km to the south. The summit caldera was formed between 25 and 9.7 ky. Ash-flow deposits and two Plinian deposits reflect explosive eruptions of more differentiated magmas. A debris-avalanche deposit (about 1.2 km3) formed hummocks at the base of the 1,000-m-high, fractured and unstable south flank before 3.6 ka. Countless explosive events took place inside the summit caldera during the last 9.7 ky. The last Plinian eruption, dated A.D.1000–1160, produced an andesitic pumice-fall deposit, which achieved a thickness of 25 cm 40 km SE of the summit. Minor eruptions since then show phreatomagmatic characteristics and a wide range in composition (mafic to rhyolitic): the events reported since A.D. 1550 include many degassing episodes, four moderate (VEI 2–3) eruptions, and one VEI 3 eruption in A.D. 1667. Ubinas erupted high-K, calc-alkaline magmas (SiO2=56 to 71%). Magmatic processes include fractional crystallization and mixing of deeply derived mafic andesites in a shallow magma chamber. Parent magmas have been relatively homogeneous through time but reflect variable conditions of deep-crustal assimilation, as shown in the large variations in Sr/Y and LREE/HREE. Depleted HREE and Y values in some lavas, mostly late mafic rocks, suggest contamination of magmas near the base of the >60-km-thick continental crust. The most recently erupted products (mostly scoria) show a wide range in composition and a trend towards more mafic magmas.Recent eruptions indicate that Ubinas poses a severe threat to at least 5,000 people living in the valley of the Rio Ubinas, and within a 15-km radius of the summit. The threat includes thick tephra falls, phreatomagmatic ejecta, failure of the unstable south flank with subsequent debris avalanches, rain-triggered lahars, and pyroclastic flows. Should Plinian eruptions of the size of the Holocene events recur at Ubinas, tephra fall would affect about one million people living in the Arequipa area 60 km west of the summit.Editorial responsibility: D Dingwell  相似文献   

11.
Three eruption events occurring in the central part of the northeastern Japan arc were investigated and compared: Adatara AD1900, Zao AD1895, and Bandai AD1888. Producing low-temperature (LT) pyroclastic surges, these events are characterized by steam eruptions ejecting no juvenile material. These eruptions' well-preserved eruptive deposits and facies facilitated granulometric analyses of the beds, which revealed the transport and deposition mechanisms of LT surges. Combining these results with those of investigations of documents reporting the events, we correlated each eruption to the relevant individual bed and reconstructed the LT surge development sequence. Important findings related to the transport and deposition modes are the following. (1) Bed sets consisting of thin, laminated ash and its overlying thick massive tuff were recognized in the Adatara 1900 proximal deposits. The bed set was probably produced by a strong wind that discharged and propagated quickly from the vent (leading wind) and a gravitationally segregated, highly concentrated flow originated from the eruption column, within a discrete eruption episode. A similar combination might have occurred during the first surge of the Bandai 1888 event. (2) Comparison of the proximal and distal facies for the largest eruption of Adatara 1900 event indicates that the initial turbulence of the eruption cloud decreased rapidly, transforming into a density-stratified surge with a highly concentrated part near the base. Similar surges occurred in the climatic stage of Zao 1895. (3) Bandai 1888 ejecta indicate massive beds deposited preferentially at topographic lows. Co-occurring planar beds showed no topographic affection, as indicated by the topographic blocking of a stratified surge. The observed facies–massive tuffs, crudely stratified tuffs, and thin bedded tuffs–are compatible with those for high-temperature surges. At Bandai, absence of dune bedded tuffs and commonly poorer sorting in the LT surge deposits might be attributable to poor thermally induced turbulence of eruption columns. Condensation of vapor in the surges might have contributed to the poor sorting. The estimated explosion energies were 6 × 1013 J for Adatara AD1900, 6.5 × 1010 J for Zao AD1895, and 6.5 × 1015 J for Bandai AD1888, implying that the three events were hydrothermal eruptions with distinctive eruptive mechanisms. Regarding eruption sources, the Adatara 1900 event was caused solely by thermal energy of the hydrothermal fluid, although magma intrusion likely triggered evolution of hydrothermal systems at Zao in 1895. Steam eruptions in the Bandai 1888 event occurred simultaneously with sudden exposure of the hydrothermal system, whose triggers require no internal energy.  相似文献   

12.
New tephro-stratigraphic studies of the Tongariro Volcanic Centre (TgVC) on the North Island (New Zealand) allowed reconstruction of some of the largest, andesitic, explosive eruptions of Mt. Ruapehu. Large eruptions were common in the Late Pleistocene, before a transition to strombolian-vulcanian and phreatomagmatic eruptive styles that have predominated over the past 10,000?years. Considering this is the most active volcano in North Island of New Zealand and the uppermost hazard limits are unknown, we identified and mapped the pyroclastic deposits corresponding to the five largest eruptions since ~27?ka. The selected eruptive units are also characterised by distinctive lithofacies associations correlated to different behaviours of the eruptive column. In addition, we clarify the source of the ~10–9.7?ka Pahoka Tephra, identified by previous authors as the product of one of the largest eruptions of the TgVC. The most common explosive eruptions taking place between ~13.6 and ~10?ka?cal?years BP involved strongly oscillating, partially collapsing eruptive columns up to 37?km high, at mass discharge rates up to 6?×?108?kg/s and magnitudes of 4.9, ejecting minimum estimated volumes of 0.6?km3. Our results indicate that this volcano (as well as the neighbouring andesitic Mt. Tongariro) can generate Plinian eruptions similar in magnitude to the Chaitén 2008 and Askja 1875 events. Such eruptions would mainly produce pyroclastic fallout covering a minimum area of 1,700?km2 ESE of the volcano, where important touristic, agricultural and military activities are based. As for the 1995/1996 eruption, our field data indicate that complex wind patterns were critical in controlling the dispersion of the eruptive clouds, developing sheared, commonly bilobate plumes.  相似文献   

13.
 Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the "Akutan tephra," is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly cohesive lahars in Hot Springs valley and Long valley could have formed from minor flank collapses of hydrothermally altered volcanic bedrock. These lahars may be unrelated to eruptive activity. Received: 31 August 1998 / Accepted: 30 January 1999  相似文献   

14.
The 1 Myr tephra records of IODP (International Ocean Discovery Program) Holes U1436A and U1437B in the Izu‐Bonin fore‐ and reararc were investigated in order to assess provenance and eruptive volumes, respectively. In total, 304 tephra samples were examined and 260 primary tephra layers were identified. Tephra provenance was determined by means of major and trace element compositions of glass shards and distinguished between Japan and Izu‐Bonin arc origin of the tephra layers. A total of 33 marine tephra compositions were correlated to the Japan arc and 227 to the Izu arc. Twenty marine tephra layers were correlated between the two drilling sites. Additionally, we defined eleven correlations of marine tephra deposits to major widespread Japanese eruptions; from the 1.05 Ma Shishimuta‐Pink Tephra to the 30 ka Aira‐Tn Tephra, both from Kyushu Island. These eruptions provide independent time markers within the sediment record and six correlations were used to date tephra layers from Japan in Hole U1436A to establish an alternative age model for this hole. Furthermore, the minimum distal tephra volumes of all detected events were calculated, which enabled the comparison of the tephra volumes that derived from the Japan and the Izu‐Bonin arcs. For some of the major Japanese eruptions these are the first volume estimations that also include distal deposits. All of the Japanese tephras derived from events with eruption magnitude Mv ≥ 5.6 and three of the investigated eruptions reach magnitudes Mv ≥ 7. Volcanic events of the Izu‐Bonin arc have mostly eruption magnitudes Mv ≤ 5.  相似文献   

15.
The Secche di Lazzaro (SDL) phreatomagmatic activity, with the associated Neostromboli sector collapse, represents the most powerful activity of the last 6 ky at Stromboli. As revealed by its present-day activity, Stromboli is one of the most eruptive volcanoes in Italy, and flank instability, along its NW flank, is a common process. Volcano instability is often dramatised by explosive eruptions, thus it is of crucial importance to understand the linking between volcano collapse and the plumbing system itself. The possible role of pre-eruptive magmatic processes as triggers of explosive eruptions can be mainly preserved by minerals and revealed by petrochemical studies. We studied the juvenile components (scoria and pumice) of the pyroclastic deposits from the SDL phreatomagmatic activity with the aim to understand the eruption–collapse link.  相似文献   

16.
Ambae Island is a mafic stratovolcano located in the northern Vanuatu volcanic arc and has a NE–SW rift-controlled elongated shape. Several hundred scoria cones and fissure-fed lava fields occur along its long axis. After many decades of quiescence, Ambae Island erupted on the 28th of November 2005, disrupting the lives of its 10,000 inhabitants. Its activity remained focused at the central (crater-lake filled) vent and this is where hazard-assessments were focused. These assessments initially neglected that maars, tephra cones and rings occur at each tip of the island where the eruptive activity occurred < 500 and < 300 yr B.P. The products of this explosive phreatomagmatic activity are located where the rift axis meets the sea. At the NE edge of the island five tephra rings occur, each comparable in size to those on the summit of Ambae. Along the NE coastline, a near-continuous cliff section exposes an up to 25 m thick succession of near-vent phreatomagmatic tephra units derived from closely spaced vents. This can be subdivided into two major lithofacies associations. The first association represents when the locus of explosions was below sea level and comprises matrix-supported, massive to weakly stratified beds of coarse ash and lapilli. These are dominant in the lowermost part of the sequence and commonly contain coral fragments, indicating that the loci of explosion were located within a reef or coral sediment near the syn-eruptive shoreline. The second type indicate more stable vent conditions and rapidly repeating explosions of high intensity, producing fine-grained tephra with undulatory bedding and cross-lamination as well as megaripple bedforms. These surge and fall beds are more common in the uppermost part of the succession and form a few-m-thick pile. An older tephra succession of similar character occurs below, and buried trees in growth position, as well as those flattened within base surge beds. This implies that the centre of this eruption was very near the coastline. The processes implied by these deposits are amongst the most violent forms of volcanism on this island. In addition, the lowland and coastal areas affected by these events are the most heavily populated. This circumstance is mirrored on many similar volcanic islands, including the nearby SW Pacific examples of Taveuni (Fiji), Upolu and Savai'i (Samoa), and Ambrym (Vanuatu). These locations are paradoxically often considered safe areas during summit/central-vent eruptions, simply because they are farthest from the central sources of ash-fall and lahar hazard. The observations presented here necessitate a revision of this view.  相似文献   

17.
Quilotoa volcano, an example of young dacitic volcanism in a lake-filled caldera, is found at the southwest end of the Ecuador's volcanic front. It has had a long series of powerful plinian eruptions of moderate to large size (VEI = 4–6), at repetitive intervals of roughly 10–15 thousand years. At least eight eruptive cycles (labeled Q-I to Q-VIII with increasing age) over the past 200 ka are recognized, often beginning with a phreatomagmatic onset and followed by a pumice-rich lapilli fall, and then a sequence of pumice, crystal, and lithic-rich deposits belonging to surges and ash flows. These unwelded pyroclastic flows left veneers on hillsides as well as very thick accumulations in the surrounding valleys, the farthest ash flow having traveled about 17 km down the Toachi valley. The bulk volumes of the youngest flow deposits are on the order of 5 km3, but that of Q-I's 800 yr BP ash-fall unit is about 18 km3. In the last two eruption cycles water has had a more important role.  相似文献   

18.
Ruapehu is a very active andesitic composite volcano which has erupted five times in the past 10 years. Historical events have included phreatomagmatic eruptions through a hot crater lake and two dome-building episodes. Ski-field facilities, road and rail bridges, alpine huts and portions of a major hydroelectrical power scheme have been damaged or destroyed by these eruptions. Destruction of a rail bridge by a lahar in 1953 caused the loss of 151 lives. Other potential hazards, with Holocene analogues, include Strombolian and sub-Plinian explosive eruptions, lava extrusion from summit or flank vents and collapse of portions of the volcano. The greatest hazards would result from renewed phreatomagmatic activity in Crater Lake or collapse of its weak southeastern wall. Three types of hazard zones can be defined for the phreatomagmatic events: inner zones of extreme risk from ballistic blocks and surges, outer zones of disruption to services from fall deposits and zones of risk from lahars, which consist of tongues down major river valleys. Ruapehu is prone to destructive lahars because of the presence of 107 m3 of hot acid water in Crater Lake and because of the surrounding summit glaciers and ice fields. The greatest risks at Ruapehu are to thousands of skiers on the ski field which crosses a northern lahar path. Three early warning schemes have been established to deal with the lahar problems. Collapse of the southeastern confining wall would release much of the lake into an eastern lahar path causing widespread damage. This is a long-term risk which could only be mitigated by drainage of the lake.  相似文献   

19.
The eruption of Toba (75,000 years BP), Sumatra, is the largest magnitude eruption documented from the Quaternary. The eruption produced the largest-known caldera the dimensions of which are 100 × 30 km and which is surrounded by rhyolitic ignimbrite covering an area of over 20,000 km2. The associated deep-sea tephra layer is found in piston cores in the north-eastern Indian Ocean covering a minimum area of 5 × 106 km2. We have investigated the thickness, grain size and texture of the Toba deep-sea tephra layer in order to demonstrate the use of deep-sea tephra layers as a volcanological tool. The exceptional magnitude and intensity of the Toba eruption is demonstrated by comparison of these data with the deep-sea tephra layers associated with the eruptions of the Campanian ignimbrite, Italy and of Santorini, Greece in Minoan time. The volume of ignimbrite and distal tephra fall deposit produced in the Toba eruption are comparable, a total of at least 1000 km3 of dense rhyolitic magma. In contrast the volume of dense magma produced by the Campanian and Santorini eruptions are approximately 70 and 13 km3 respectively. Thickness versus distance data on the three deep-sea tephra layers show that eruptions of smaller magnitude than Santorini are unlikely to be preserved as distinct tephra layers in most deep-sea cores. In proximal cores all three tephra layers show two distinct units: a lower coarse-grained unit and an upper fine-grained unit. We interpret the lower unit as a plinian deposit and the upper unit as a co-ignimbrite ash-fall deposit, indicating two major eruptive phases. The Toba tephra layer is coarser both in maximum and median grain size than the Campanian and Santorini layers at a given distance from source. These data are interpreted to indicate a very high cruption column, estimated to be at least 45 km. We have applied a method for estimating the duration of the Toba eruption from the style of graded-bedding in deep-sea tephra layers. Studies of two cores yield estimates of 9 and 14 days. The eruption column height and duration estimates both indicate an average volume discharge rate of approximately 106 m3/sec. The Toba eruption therefore was not only of exceptional magnitude, but also of exceptional intensity.  相似文献   

20.
In this study are discussed new SEM-EDS analyses performed on glass shards from five cores collected in the Central Adriatic Sea and two cores recovered from the South Adriatic Sea. A total of 26 tephra layers have been characterized and compared with the geochemical features of terrestrial deposits and other tephra archives in the area (South Adriatic Sea and Lago Grande di Monticchio, Vulture volcano). The compositions are compatible with either a Campanian or a Roman provenance. The cores, located on the Central Adriatic inner and outer shelf, recorded tephra referred to explosive events described in the literature: AP3 (sub-Plinian activity of the Somma-Vesuvius, 2710 ± 60 14C years BP); Avellino eruption (Somma–Vesuvius, 3548 ± 129 14C years BP); Agnano Monte Spina (Phlegrean Fields, 4100 ± 400 years BP); Mercato eruption (Somma–Vesuvius, 8010 ± 35 14C years BP; Agnano Pomici Principali eruption (Phlegrean Fields, 10,320 ± 50 14C years BP); Neapolitan Yellow Tuff (Phlegrean Fields, 12,100 ± 170 14C years BP). Some of these layers were also observed in the South Adriatic core IN68-9 in addition to younger (AP2, sub-Plinian eruption, Somma–Vesuvius, 3225 ± 140 14C years BP), and older layers (Pomici di Base eruption, Somma–Vesuvius, 18,300 ± 150 14C years BP). Significant is the tephra record of core RF95-7 that, for the first time in the Adriatic Sea, reports the occurrence of tephra layers older than 60 ka: the well known Mediterranean tephra layers X2 (ca. 70 ka), W1 (ca. 140 ka) and V2 (Roman origin, ca. 170 ka) as well as other tephra layers attributed, on the basis of geochemistry and biostratigraphy, to explosive eruptions occurred at Vico (138 ± 2 and 151 ± 3 ka BP) and Ischia (147–140 ka BP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号