首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We invert for acoustic source volume outflux and momentum imparted to the atmosphere using an infrasonic network distributed about the erupting lava lake at Mount Erebus, Ross Island, Antarctica. By modeling these relatively simple eruptions as monopole point sources we estimate explosively ejected gas volumes that range from 1,000 m3 to 24,000 m3 for 312 lava lake eruptions recorded between January 6 and April 13, 2006. Though these volumes are compatible with bubble volumes at rupture (as estimated from explosion video records), departures from isotropic radiation are evident in the recorded acoustic wavefield for many eruptions. A point-source acoustic dipole component with arbitrary axis orientation and strength provides precise fit to the recorded infrasound. This dipole source axis, corresponding to the axis of inferred short-duration material jetting, varies significantly between events. Physical interpretation of dipole orientation as being indicative of eruptive directivity is corroborated by directional emissions of ejecta observed in Erebus eruption video footage. Although three azimuthally distributed stations are insufficient to fully characterize the eruptive acoustic source we speculate that a monopole with a minor amount of oriented dipole radiation may reasonably model the primary features of the recorded infrasound for these eruptions.  相似文献   

2.
Between 1986 and 1990 the eruptive activity of Erebus volcano was monitored by a video camera with on-screen time code and recorded on video tape. Corresponding seismic and acoustic signals were recorded from a network of 6 geophones and 2 infrasonic microphones. Two hundred Strombolian explosions and three lava flows which were erupted from 7 vents were captured on video. In December 1986 the Strombolian eruptions ejected bombs and ash. In November 1987 large bubble-bursting Strombolian eruptions were observed. The bubbles burst when the bubble walls thinned to ∼ 20 cm. Explosions with bomb flight-times up to 14.5 s were accompanied by seismic signals with our local size estimate, “unified magnitudes” (mu), up to 2.3. Explosions in pools of lava formed by flows in the Inner Crater were comparatively weak.  相似文献   

3.
Stromboli Volcano in Italy is a persistently active, complex volcanic system. In May 2002 activity was confined to 3 major summit craters within which several active vents hosted multiple explosions each hour. During a 5-day field campaign an array of 3 low-frequency microphones was installed to investigate the coherent infrasound produced by degassing from these vents. Consistent phase lags across the 3 stations indicate distinct sources that are subsequently investigated to determine the associated vent location, apparent depth, and origin time. The cross-correlation routine allows for variations in comparison window length, waveform filtering bandwidth, and correlation and consistency thresholds, allowing for improved detection of certain types of degassing sources. Identification of activity at the various vents could be subsequently corroborated with 3 channels of synchronously acquired thermal data and video. During the May 2002 experiment persistent, energetic infrasound was observed from a passive degassing source within the Central Crater (CC) and transient infrasound, produced by discrete Strombolian explosions, was identified at 4 additional vents. The continuous infrasound produced by the CC exhibits variable frequency-dependent correlation lag times that are interpreted as a diffraction effect due to the acoustic radiators recessed location within a steep-walled crater. Such dispersion has important implications for accurate eruption source modeling because it indicates that infrasonic waveforms may be significantly filtered during propagation. Transient explosion signals from the Northeast Crater (NEC) and Southwest Crater (SWC) vents also exhibit dynamic correlation lag times, but this scatter may be more reasonably attributed to variable epicentral locations. Explosions from the NEC west vent, for instance, appear to emanate from a diffuse zone with a lateral extent in excess of 10 m.Editorial responsibility: R. Cioni  相似文献   

4.
The 26 October 2002–28 January 2003 eruption of Mt. Etna volcano was characterised by lava effusion and by an uncommon explosivity along a 1 km-long-eruptive fissure on the southern, upper flank of the volcano. The intense activity promoted rapid growth of cinder cones and several effusive vents. Analysis of thermal images, recorded throughout the eruption, allowed investigation of the distribution of vents along the eruptive fissure, and of the nature of explosive activity. The spatial and temporal distribution of active vents revealed phases of dike intrusion, expansion, geometric stabilization and drainage. These phases were characterised by different styles of explosive activity, with a gradual transition from fire fountaining through transitional phases to mild strombolian activity, and ending with non-explosive lava effusion. Here we interpret the mechanisms of the dike emplacement and the eruptive dynamics, according to changes in the eruptive style, vent morphology and apparent temperature variations at vents, detected through thermal imaging. This is the first time that dike emplacement and eruptive activity have been tracked using a handheld thermal camera and we believe that its use was crucial to gain a detailed understanding of the eruptive event.  相似文献   

5.
The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.  相似文献   

6.
The most recent eruptive cycle of Tungurahua volcano began in May 2004, and reached its highest level of activity in July 2004. This activity cycle is the last one of a series of four cycles that followed the reawakening and major eruption of Tungurahua in 1999. Between June 30 and August 12, 2004, three temporary seismic and infrasonic stations were installed on the flanks of the volcano and recorded over 2,000 degassing events. The events are classified by waveform character and include: explosion events (the vast majority, spanning three orders of pressure amplitudes at 3.5 km from the vent, 0.1–180 Pa), jetting events, and sequences of repetitive infrasonic pulses, called chugging events. Travel-time analysis of seismic first arrivals and infrasonic waves indicates that explosions start with a seismic event at a shallow depth (<200 m), followed ∼1 s later by an out-flux of gas, ash and solid material through the vent. Cluster analysis of infrasonic signals from explosion events was used to isolate four groups of similar waveforms without apparent correlation to event size, location, or time. The clustering is thus associated with source mechanism and probably spatial distribution. Explosion clusters do not exhibit temporal dependence.  相似文献   

7.
Pyroclastic-laden explosive eruptions from Santiaguito Volcano (Guatemala) are vented from the 200-m diameter Caliente Dome summit and result in a superposition of spatially extensive and temporally sustained (tens of seconds to minutes) acoustic sources. A network of infrasonic microphones distributed on various sides of the volcano record distinct waveforms, which are poorly correlated across the network and suggestive of acoustic interference from multiple sources. Presuming the infrasound wavefield is a linear superposition of spatially and temporally distinct sub-events, we introduce a semblance mapping technique to recover the time history of the spatially evolving sources during successive time windows. Coincident high-resolution video footage corroborates that both rapid dome uplift and individual explosive pulses are likely sources of high semblance infrasound that are identifiable during short (2 s) time windows. This study suggests that complex and network-variable infrasound waveforms are produced whenever a volcanic vent source dimension is large compared to the wavelength of the sound being produced. Non-compact infrasound radiators are probably commonplace at silicic volcanic systems, where venting often occurs across a dome surface.  相似文献   

8.
The first eruptive activity at Kīlauea Volcano’s summit in 25 years began in March 2008 with the opening of a 35-m-wide vent in Halema‘uma‘u crater. The new activity has produced prominent very-long-period (VLP) signals corresponding with two new behaviors: episodic tremor bursts and small explosive events, both of which represent degassing events from the top of the lava column. Previous work has shown that VLP seismicity has long been present at Kīlauea’s summit, and is sourced approximately 1 km below Halema‘uma‘u. By integrating video observations, infrasound and seismic data, we show that the onset of the large VLP signals occurs within several seconds of the onset of the degassing events. This timing indicates that the VLP is caused by forces—sourced at or very near the lava free surface due to degassing—transmitted down the magma column and coupling to the surrounding rock at 1 km depth.  相似文献   

9.
Rothenberg scoria cone Eifel formed by an alternation of three Strombolian and three phreatomagmatic eruptive phases. Eruptions took place from up to six vents on a 600 m-long fissure, building an early tuff ring and then two coalescing scoria cones. Strombolian volcanism dominated volumetrically, as the supply of external water was severely limited. Magma/water interaction only occurred during the opening stages of eruption at any vent, when discharge rates were low and the fragmentation surface was below the water table. The phreatomagmatic deposits consist of relatively well-sorted fall beds and only minor surge deposits. They contain juvenile clasts with a wide range of vesicularity and grain size, implying considerable heterogeneity in the assemblage of material ejected by the phreatomagmatic explosions. the transition from phreatomagmatic to Strombolian eruption at any vent was rapid and irreversible, and Strombolian volcanism persisted even when eruption rates are inferred to have waned at the close of each eruptive phase as, by then, the fragmentation surfaces were high in the growing cones and water was denied access to the magma. The Strombolian deposits are relatively homogenous, consisting of alternating coarser- and finer-grained, well-sorted fall beds erupted during periods of open-vent eruption and partial blockage of the vent respectively. The intervals of Strombolian eruption were always a delicate balance between discharge of freely degassing magma and processes such as ponding of degassed magma in the vent, collapse of the growing cones, and repeated recycling of clasts through the vent. Clear evidence of the instability of the Rothenberg cones is preserved in numerous unconformities within deposits of the inner walls of the cones. The close of Strombolian phases was probably marked by a decreasing supply of magma to the vents accompanied by ponding and stagnation of lava in the craters.  相似文献   

10.
We implement an infrasound semblance technique to identify acoustic sources originating from volcanic vents and apply the technique to the generally low-amplitude infrasound (< 3 Pa at 1 km) signals produced by Santiaguito dome in Guatemala. Semblance detection is demonstrated with data collected from two-element miniature arrays with ~ 30 m spacing between elements. The semblance technique is effective at identifying a range of eruptive phenomena, including pyroclastic-laden eruptions, vigorous degassing events, and rockfalls, even during periods of high wind contamination Many of the detected events are low in amplitude (tens of mPa) such that they are observed only by select arrays positioned with proximity and line-of-sight to the source. Larger events, such as the pyroclastic-laden eruptions, which occurred bi-hourly in 2009, were detected by all five arrays and produced an infrasonic signal that was correlated across the network. Network correlated events can be roughly located and map to the summit of the Caliente Vent where pyroclastic-laden eruptions originate. In general, the degree of Santiaguito infrasound event correlation is poor across the network, suggesting that complex source geometry contributes to asymmetric sound radiation.  相似文献   

11.
The pyroclastic deposits of many basaltic volcanic centres show abrupt transitions between contrasting eruptive styles, e.g., Hawaiian versus Strombolian, or `dry' magmatic versus `wet' phreatomagmatic. These transitions are controlled dominantly by variations in degassing patterns, magma ascent rates and degrees of interaction with external water. We use Crater Hill, a 29 ka explosive/effusive monogenetic centre in the Auckland volcanic field, New Zealand, as a case study of the transitions between these end-member eruptive styles. The Crater Hill eruption took place from at least 4 vents spaced along a NNE-trending, 600-m-long fissure that is contained entirely within a tuff ring generated during the earliest eruption phases. Early explosive phases at Crater Hill were characterised by eruption from multiple unstable and short-lived vents; later, dominantly extrusive, volcanism took place from a more stable point source. Most of the Crater Hill pyroclastic deposits were formed in 3 phreatomagmatic (P) and 4 `dry' magmatic (M) episodes, forming in turn the outer tuff ring and maar crater (P1, M1, P2) and scoria cone 1 (M2–M4). This activity was followed by formation of a lava shield and scoria cone 2. Purely `wet' activity is represented by the bulk of P1 and P2, and purely `dry' activity by much of M2–M4. However, M1 and parts of M2 and M4 show evidence for simultaneous eruptions of differing style from adjacent vents and rapid variations in the extent and timing of magma:water interaction at each vent. The nature of the wall-rock lithics, and these rapid variations in inferred water/magma ratios imply interaction was occurring mostly at depths of ≤80 m, and the vesicularity patterns in juvenile clasts from these and the P beds imply that rapid degassing occurred at these shallow levels. We suggest that abrupt transitions between eruptive styles, in time and space, at Crater Hill were linked to changes in the local magma supply rate and patterns and vigour of degassing during the final metres of ascent.  相似文献   

12.
Fuego volcano, Guatemala is a high (3,800 m) composite volcano that erupts gas-rich, high-Al basalt, often explosively. It spends many years in an essentially open vent condition, but this activity has not been extensively observed or recorded until now. The volcano towers above a region with several tens of thousands of people, so that patterns in its activity might have hazard mitigation applications. We conducted 2 years of continuous observations at Fuego (2005–2007) during which time the activity consisted of minor explosions, persistent degassing, paroxysmal eruptions, and lava flows. Radiant heat output from MODIS correlates well with observed changes in eruptive behavior, particularly during abrupt changes from passive lava effusion to paroxysmal eruptions. A short-period seismometer and two low-frequency microphones installed during the final 6 months of the study period recorded persistent volcanic tremor (1–3 Hz) and a variety of explosive eruptions. The remarkable correlation between seismic tremor, thermal output, and daily observational data defines a pattern of repeating eruptive behavior: 1) passive lava effusion and subordinate strombolian explosions, followed by 2) paroxysmal eruptions that produced sustained eruptive columns, long, rapidly emplaced lava flows, and block and ash flows, and finally 3) periods of discrete degassing explosions with no lava effusion. This study demonstrates the utility of low-cost observations and ground-based and satellite-based remote sensing for identifying changes in volcanic activity in remote regions of underdeveloped countries.  相似文献   

13.
Mount Erebus, a large intraplate stratovolcano dominating Ross Island, Antarctica, hosts the world's only active phonolite lava lakes. The main manifestation of activity at Erebus volcano in December 2004 was as the presence of two convecting lava lakes within an inner crater. The long-lived Ray Lake, ~ 1400 m2 in area, was the site of up to 10 small Strombolian eruptions per day. A new but short-lived, ~ 1000–1200 m2 lake formed at Werner vent in December 2004 sourced by lava flowing from a crater formed in 1993 by a phreatic eruption. We measured the radiative heat flux from the two lakes in December 2004 using a compact infrared (IR) imaging camera. Daily thermal IR surveys from the Main Crater rim provide images of the lava lake surface temperatures and identify sites of upwelling and downwelling. The radiative heat outputs calculated for the Ray and Werner Lakes are 30–35 MW and 20 MW, respectively. We estimate that the magma flux needed to sustain the combined heat loss is ~ 250–710 kg s− 1, that the minimum volume of the magma reservoir is 2 km3, and that the radius of the conduit feeding the Ray lake is ~ 2 m.  相似文献   

14.
 The Pu'u 'Ō'ō-Kūpaianaha eruption on the east rift zone of Kīlauea began in January 1983. The first 9 years of the eruption were divided between the Pu'u 'Ō'ō (1983–1986) and Kūpaianaha (1986–1992) vents, each characterized by regular, predictable patterns of activity that endured for years. In 1990 a series of pauses in the activity disturbed the equilibrium of the eruption, and in 1991, the output from Kūpaianaha steadily declined and a short-lived fissure eruption broke out between Kūpaianaha and Pu'u 'Ō'ō. In February 1992 the Kūpaianaha vent died, and, 10 days later, eruptive episode 50 began as a fissure opened on the uprift flank of the Pu'u 'Ō'ō cone. For the next year, the eruption was marked by instability as more vents opened on the flank of the cone and the activity was repeatedly interrupted by brief pauses in magma supply to the vents. Episodes 50–53 constructed a lava shield 60 m high and 1.3 km in diameter against the steep slope of the Pu'u 'Ō'ō cone. By 1993 the shield was pockmarked by collapse pits as vents and lava tubes downcut as much as 29 m through the thick deposit of scoria and spatter that veneered the cone. As the vents progressively lowered, the level of the Pu'u 'Ō'ō pond also dropped, demonstrating the hydraulic connection between the two. The downcutting helped to undermine the prominent Pu'u 'Ō'ō cone, which has diminished in size both by collapse, as a large pit crater formed over the conduit, and by burial of its flanks. Intervals of eruptive instability, such as that of 1991–1993, accelerate lateral expansion of the subaerial flow field both by producing widely spaced vents and by promoting surface flow activity as lava tubes collapse and become blocked during pauses. Received: 1 July 1997 / Accepted: 23 October 1997  相似文献   

15.
The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age.The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75×35 km2 La Garita caldera and eruption of the Fish Canyon Tuff were probably triggered by destabilization of the chamber roof as magma was withdrawn during the Pagosa Peak eruption.  相似文献   

16.
The Puu Oo eruption of Kilauea Volcano in Hawaii is one of its largest and most compositionally varied historical eruptions. The mineral and whole-rock compositions of the Puu Oo lavas indicate that there were three compositionally distinct magmas involved in the eruption. Two of these magmas were differentiated (<6.8 wt% MgO) and were apparently stored in the rift zone prior to the eruption. A third, more mafic magma (9–10 wt% MgO) was probably intruded as a dike from Kilauea's summit reservoir just before the start of the eruption. Its intrusion forced the other two magmas to mix, forming a hybrid that erupted during the first three eruptive episodes from a fissure system of vents. A new hybrid was erupted during episode 3 from the vent where Puu Oo later formed. The composition of the lava erupted from this vent became progressively more mafic over the next 21 months, although significant compositional variation occurred within some eruptive episodes. The intra-episode compositional variation was probably due to crystal fractionation in the shallow (0.0–2.9 km), dike-shaped (i.e. high surface area/volume ratio) and open-topped Puu Oo magma reservoir. The long-term compositional variation was controlled largely by mixing the early hybrid with the later, more mafic magma. The percentage of mafic magma in the erupted lava increased progressively to 100% by episode 30 (about two years after the eruption started). Three separate magma reservoirs were involved in the Puu Oo eruption. The two deeper reservoirs (3–4 km) recharged the shallow (0.4–2.9 km) Puu Oo reservoir. Recharge of the shallow reservoir occurred rapidly during an eruption indicating that these reservoirs were well connected. The connection with the early hybrid magma body was cut off before episode 30. Subsequently, only mafic magma from the summit reservoir has recharged the Puu Oo reservoir.  相似文献   

17.
Emission rates of sulfur dioxide (SO2) were measured at Erebus volcano, Antarctica in December between 1992 and 2005. Since 1992 SO2 emissions rates are normally distributed with a mean of 61 ± 27 Mg d− 1 (0.7 ± 0.3 kg s− 1) (n = 8064). The emission rates vary over minutes, hours, days and years. Hourly and daily variations often show systematic and cyclic trends. Long-wavelength, large amplitude trends appear related to lava lake area and both are likely controlled by processes occurring at depth. Time series analysis of continuous sequences of measurements obtained over periods of several hours reveals periodicity in SO2 output ranging from 10 to 360 min, with a 10 min cycle being the most dominant. Closed and open-system degassing models are considered to explain observed variable degassing rates. Closed-system degassing is possible as rheological stiffening and stick/slip may occur within the system. However, the timescales represented in these models do not fit observations made on Erebus. Open-system degassing and convection fits the observations collected as the presented models were developed for a system similar to Erebus in terms of degassing, eruptive activity and process repose time. We show that with the observed emission rate (0.71 kg s− 1) and a crystal content of 30%, magma will cool 65 °C to match observed heat fluxes; this cooling is sufficient enough to drive convection.  相似文献   

18.
The heights of lava fountains formed in Hawaiian-style eruptions are controlled by magma gas content, volume flux and the amounts of lava re-entrainment and gas bubble coalescence. Theoretical models of lava fountaining are used to analyse data on lava fountain height variations collected during the 1983–1986 Pu'u 'O'o vent of Kilauea volcano, Hawaii. The results show that the variable fountain heights can be largely explained by the impact of variations in volume flux and amount of lava re-entrainment on erupting magmas with a constant gas content of 0.32 wt.% H2O. However, the gas content of the magma apparently declined by 0.05 wt.% during the last 10 episodes of the eruption series and this decline is attributed to more extensive pre-eruption degassing due to a shallowing of the sub-vent feeder dike. It is concluded that variations in lava fountain height cannot be simply interpreted as variations in gas content, as has previously been suggested, but that fountain height can still be a useful guide to minimum gas contents. Where sufficient data are available on eruptive volume fluxes and extent of lava entrainment, greatly improved estimates can be made of magma gas content from lava fountain height.  相似文献   

19.
A tephrostratigraphy for Erebus volcano is presented, including tephra composition, stratigraphy, and eruption mechanism. Tephra from Erebus were collected from glacial ice and firn. Scanning electron microscope images of the ash morphologies help determine their eruption mechanisms The tephra resulted mainly from phreatomagmatic eruptions with fewer from Strombolian eruptions. Tephra having mixed phreatomagmatic–Strombolian origins are common. Two tephra deposited on the East Antarctic ice sheet, ~ 200 km from Erebus, resulted from Plinian and phreatomagmatic eruptions. Glass droplets in some tephra indicate that these shards were produced in both phreatomagmatic and Strombolian eruptions. A budding ash morphology results from small spheres quenched during the process of hydrodynamically splitting off from a parent melt globule. Clustered and rare single xenocrystic analcime crystals, undifferentiated zeolites, and clay are likely accidental clasts entrained from a hydrothermal system present prior to eruption. The phonolite compositions of glass shards confirm Erebus volcano as the eruptive source. The glasses show subtle trends in composition, which correlate with stratigraphic position. Trace element analyses of bulk tephra samples show slight differences that reflect varying feldspar contents.  相似文献   

20.
The 1998 eruption of Volcán Cerro Azul in the Galápagos Islands produced two intra-caldera vents and a flank vent that erupted more than 1.0×108 m3 of lava. Lava compositions changed notably during the 5-week eruption, and contemporaneous eruptions in the caldera and on the flank produced different compositions. Lavas erupted from the flank vent range from 6.3 to 14.1% MgO, nearly the entire range of MgO contents previously reported from the volcano. On-site monitoring of eruptive activity is linked with petrogenetic processes such that geochemical variations are evaluated in a temporal context. Lavas from the 1998 eruption record two petrogenetic stages characterized by progressively more mafic lavas as the eruption proceeded. Crystal compositions, whole rock major and trace element compositions, and isotope ratios indicate that early lavas are the product of mixing between 1998 magma and remnant magma of the 1979 eruption. Intra-caldera lavas and later lavas have no 1979 signature, but were produced by the 1998 magma incorporating olivine and clinopyroxene xenocrysts. Thus, early magma petrogenesis is characterized by mixing with the 1979 magma, followed by the magma progressively entraining wehrlite cumulate mush.Editorial Responsibility: M.R. Carroll  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号