首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The development of thermodynamic models for tonalitic melt and the updated clinopyroxene and amphibole models now allow the use of phase equilibrium modelling to estimate P–T conditions and melt production for anatectic mafic and intermediate rock types at high‐T conditions. The Permian mid‐lower crustal section of the Ivrea Zone preserves a metamorphic field gradient from mid amphibolite facies to granulite facies, and thus records the onset of partial melting in metabasic rocks. Interlayered metabasic and metapelitic rocks allows the direct comparison of P–T estimates and partial melting between both rock types with the same metamorphic evolution. Pseudosections for metabasic compositions calculated in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) system are presented and compared with those of metapelitic rocks calculated with consistent end‐member data and a–x models. The results presented in this study show that P–T conditions obtained by phase equilibria modelling of both metabasic and metapelitic rocks give consistent results within uncertainties, allowing integration of results obtained for both rock types. In combination, the calculations for both metabasic and metapelitic rocks allows an updated and more precisely constrained metamorphic field gradient for Val Strona di Omegna to be defined. The new field gradient has a slightly lower dP/dT which is in better agreement with the onset of crustal thinning of the Adriatic margin during the Permian inferred in recent studies.  相似文献   

2.
The metamorphic rocks of the Ivrea Zone in NW Italy preserve a deep crustal metamorphic field gradient. Application of quantitative phase equilibria methods to metapelitic rocks provides new constraints on the P–T conditions recorded in Val Strona di Omegna, Val Sesia and Val Strona di Postua. In Val Strona di Omegna, the metapelitic rocks show a structural and mineralogical change from mica‐schists with the common assemblage bi–mu–sill–pl–q–ilm ± liq at the lowest grades, through metatexitic migmatites (g–sill–bi–ksp–pl–q–ilm–liq) at intermediate grades, to complex diatexitic migmatites (g–sill–ru–bi–ksp–pl–q–ilm–liq) at the highest grades. Partial melting in the metapelitic rocks is consistent with melting via the breakdown of first muscovite then biotite. The metamorphic field gradient in Val Strona di Omegna is constrained to range from conditions of ~3.5–6.5 kbar at ≈650 °C to ~10–12 kbar at >900 °C. The peak P–T estimates, particularly for granulite facies conditions, are significantly higher than those of most earlier studies. In Val Sesia and Val Strona di Postua, cordierite‐bearing rocks record the effects of contact metamorphism associated with the intrusion of a large mafic body (the Mafic Complex). The contact metamorphism occurred at lower pressures than the regional metamorphic peak and overprints the regional metamorphic assemblages. These relationships are consistent with the intrusion of the Mafic Complex having post dated the regional metamorphism and are inconsistent with a model of magmatic underplating as the cause of granulite facies metamorphism in the region.  相似文献   

3.
Lower crustal and upper mantle rocks exposed at the earth's surface present direct possibility to measure their physical properties that must be, in other cases, interpreted using indirect methods. The results of these direct measurements can be then used for the corrections of models based on the indirect data. Elastic properties are among the most important parameters studied in geophysics and employed in many fields of earth sciences. In laboratory, dynamic elastic properties are commonly tested in three mutually perpendicular directions. The spatial distribution of P- and S-wave velocities are then computed using textural data, modal composition, density and elastic constants. During such computation, it is virtually impossible to involve all microfabric parameters like different types of microcracking, micropores, mineral alteration or quality of grain boundaries.

In this study, complete 3D ultrasonic transmission of spherical samples in 132 independent directions at several levels of confining pressure up to 400 MPa has been employed for study of selected mafic and ultrabasic rocks sampled in and nearby Balmuccia ultrabasic massif (Ivrea zone, Southern Alps, NW Italy). This method revealed large directional variance of maximum P-wave velocity and different symmetries (orthorhombic vs. transversal isotropic) of elastic waves 3D distribution that has not been recorded on these rocks before. Moreover, one dunite sample exhibits P-wave velocity approaching to that of olivine single crystal being interpreted as influence of CPO.  相似文献   


4.
We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 μm and are regularly distributed in the core of the garnet. Microstructural and micro‐Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K‐feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0–3.4 wt%), contain 860–1700 ppm CO2 and reach the highest H2O contents (6.5–10 wt%). In the transition zone melts have intermediate H2O (4.8–8.5 wt%), CO2 (457–1534 ppm) and maficity (FeO + MgO = 2.3–3.9 wt%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2–4.7 wt%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4–8.3 wt%) to the other two zones. Our results represent the first clear evidence for carbonic fluid‐present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid–melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+‐bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon‐contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid‐present melting of the deep continental crust represents, together with hydrate‐breakdown melting reactions, an important process in the origin of crustal anatectic granitoids.  相似文献   

5.
Pipe-like ultramafic bodies, hosting Ni–Cu–PGE sulphidedeposits, intrude the Main Gabbro and the roof metasedimentsof the Ivrea Zone, NW Italy. These bodies were emplaced at 287± 3 Ma and represent the last mantle-derived melts associatedwith an underplating event that largely drove the crustal evolutionof this area during the late Carboniferous (  相似文献   

6.
The Ivrea amphitheatre (IA) in NW Italy has been studied since 1850, on pedostratigraphic and morphological bases. Three stratigraphic groups of glacial sediments were distinguished. Newly recognized stratigraphic boundaries are based on interstadial/interglacial units, palaeosols and lacustrine organic layers interbedded with glacigenic deposits, and on pedostratigraphy. Mapping of morphological features and associated marginal and sub-glacial deposit facies was used to characterize and reconstruct glacial margin fluctuations. Based on the field evidence, the stratigraphical limits recognized at single sites can be interpolated over the whole amphitheatre. Ten stratigraphic units (referred to as alloformations: Afs) were distinguished and mapped. They are related to at least as many glacial episodes ranging in age from the end of the Early Pleistocene to the Late Pleistocene. The youngest three glacial units (Serra Af, Piverone Af and Ivrea Af) and one interstadial level (Alice Superiore Unit between Serra and Piverone Afs) are discussed in detail. Based on biostratigraphical and pedological, as well as sedimentological and morphological data, the Serra Af can be attributed to MIS 6 and Piverone Af to MIS 4. The 10Be surface exposure ages from two boulders (27.9±3.1, 32.4±4.0 kyr) on the Serra d’Ivrea moraine provide only a minimum age for moraine construction. The alignment of typical ice marginal landforms (moraines and kame terraces) for the more recent unit (Ivrea Af) has allowed recognition of 12 principal stadials during the LGM and Lateglacial; 6 stadials in the amphitheatre and 6 stadials in Dora Baltea Valley, and reconstruction of the nature of the last glacial retreat from the amphitheatre to the cirques. 10Be exposure ages from three boulders related to Ivrea Af are 13.1±1.0, 17.4±2.6 and 20.8±1.5 ka. The latter two ages indicate that the Dora Baltea Glacier deposited the Ivrea Af in the IA during MIS 2. The 10Be exposure ages of 14.6±1.2 and 14.0±0.9 ka from a polished bedrock surface some 15 km upstream from the amphitheatre provide a minimum age for ice decay.  相似文献   

7.
Summary Corona textures between olivine and plagioclase or orthopyroxene and plagioclase are present in Hercynian gabbroic rocks from the Calabrian Sila Massif. They have been studied through optical and SEM investigations together with EDS and WDS analyses. Textural features indicate the existence of two extreme corona types formed during late magmatic stages or during subsolidus cooling. Magmatic coronas are characterized by an inner orthopyroxene layer and an outer orange-brown amphibole layer that might be in optical continuity with orthopyroxene and amphibole poikilites respectively. Subsolidus coronas consist of an inner layer of colourless amphibole and an outer layer of amphibole ± spinel. They sometimes form a collar also around plagioclase enclosed in olivine. A large spectrum in the composition of corona amphiboles from Ti-bearing pargasite to Mg-hornblende was observed. The variation in Ti content of amphibole was interpreted as a consequence of the different conditions of crystallization from late magmatic to subsolidus with temperatures ranging from 880°C to 580°C. The significant gahnite component in spinel possibly indicates that subsolidus reactions occurred in an open system. The pressure of formation constrained by the mineral assemblage of metamorphic basement rocks and by the neighbouring diorites has been estimated at 4 kbar.
Spätmagmatische und Subsolidus-Koronatexturen in gabbroiden Gesteinen des Sila Massives (Kalabrien, Italien)
Zusammenfassung In herzynischen gabbroiden Gesteinen des Sila Massives in Kalabrien treten Korona-texturen zwischen Olivin und Plagioklas oder Orthopyroxen und Plagioklas auf. Diese wurden mittels optischer Methoden und SEM in Verbindung mit EDS und WDS Analytik untersucht. Textureile Kriterien belegen die Existenz zweier verschiedenartiger Koronatypen die während deospätmagmatischen Stadiums oderwährend der Abkühlung lung im Subsolidus Bereich gebildet wurden. Die magmatischen Koronatexturen sind durch eine innere Othopyrozenschicht und eine äußere orange-braune Ampkibolschicht gekennzeichnet, die in optischer Kontinuatät Orthopyroxen bzw. Amphibihol-poikilitn steht. Subsolidus-Koronas bestehen aus einer inneren Lage eines farblosen Amphiboles und einer äußeren Schicht von Amphibol ± Spinell. Bisweilen umgeben sie ringförmig in Olivin eingeschlossenen Plagioklos. Die Amphibolzusammensetzung in diesen Koronas variiert stark von Ti-führendem Pargasit bis Mg-Hornblende. Die Streubreite dumTi-Gehaltes der Amphibole wird durch unterschiedliche Kristallisations-bedingungen während des spätmagmatischen bis Subsolidusstadiums (880°C bis 550°C) interpretiert. Die signifikante (Gahnitkomponente des Spinells weist auf Subsolidusreaktionen in einem offenen System hin. Der Bildungsdruck, ablegeit aus der Mineral-vergesellschaftung der metamorphen Basementgetsteine und der benachbarten Diorite, wird mit 4kb abgeschätzt.


With 3 Figures  相似文献   

8.
Sapphirine occurs in a 3-5 m wide zone between amphibole-lherzolite and garnetiferous metagabbro at Finero in the Ivrea Zone, NW Italian Alps. Layers consisting of plag + hb + sa + cpx + opx + sp + gt are interbanded with spinel pyroxenites, which may contain sapphirine replacing spinel. All minerals are very magnesian, with XMg between 0.78 and 0.92. Bulk rock analyses suggest that precursors to the sapphirine-bearing rocks were igneous cumulates of plagioclase + olivine + hornblende + spinel. Up to 16wt% CaO does not inhibit sapphirine formation and it is the unusually Mg-rich nature of the host rocks which allows sapphirine development. The early igneous assemblage was replaced by one of cpx + sa + hb +± plag at a pressure of 9 ± 1 kbar and temperatures of 900 ± 50°C. Subsequent rapid uplift caused the instability of gt, gt + hb, hb and sa + cpx to form opx + plag ± sp ± sa symplectites.  相似文献   

9.
In the southern part of the Ivrea Zone (Italy), the majority of the Mafic Formation is composed of: 1. amphibole-bearing gabbro; 2. a series of rocks ranging from norites to charnockites; 3. leucocratic charnockites. In the proximity of metasedimentary septa within the Mafic Formation, the igneous lithologies are in many places intimately and chaotically intermingled, giving rise to a marble-cake structure. Whole-rock chemistry, and oxygen and strontium isotopic compositions indicate that the mafic and felsic rocks are dominated by mantle and crustal sources respectively. The norite-charnockite suite may be modelled as the mixing product of basic and acid melts. Abundant plastic deformation structures suggest that mafic and hybrid rocks experienced an important tectonic event during or soon after their crystallization. Melting of crustal country rocks continued after the deformation event and produced the undeformed leucocratic charnockites. The study area exemplifies some of the possible effects of the intrusion of a large volume of basic magma into hot crust.  相似文献   

10.
BAKER  A. J. 《Journal of Petrology》1990,31(1):243-260
Stable isotope compositions of Ivrea Zone marbles and associatedlithologies are in general heterogeneous. The oxygen isotopecomposition of quartz in pelites ranges from 18O +9 to + 17(SMOW) and does not vary systematically with metamorphic grade.Peridotites retain oxygen isotope signatures close to mantlevalues. Marble calcites vary in isotopic composition from 13C + 2(PDB),180 +24(SMOW)to 13C –6(PDB), 18O + 13 (SMOW).Depletions in 18O and 13C may be explained dominantly by interactionwith fluids derived from within the observed metasedimentarysequence during prograde metamorphism. 18O and 13C show gradients of greater than 5/m across marblemargins and within marbles. The preservation of such isotopicgradients is not consistent with the long-term presence of grain-boundary-scaleinterconnected fluid films in and around marbles. There is ageneral lowering of 18O within individual marble bodies althoughlarge carbon and oxygen isotopic gradients are present. Calcitein marbles may attain oxygen isotope equilibrium, but rarelycarbon isotope equilibrium, with surrounding metapelites. Infiltrationof marbles must involve a component of channelized fluid flow. The general lack of isotopic equilibration within the sequencerequires channelized fluid flow and limited fluid-rock ratios.Large pervasive mantle to crust fluid fluxes are not consistentwith the observations. *Present address: Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU, England  相似文献   

11.
Abstract Microstructural and chemical analysis of plagioclase in 20 superficially similar amphibolite facies ductile shear zones in metagabbors and amphibolites of the Ivrea Zone in Italy reveals significant differences in An and Ba contents. Plagioclase, which was deformed at P-T conditions lower than those of the wall rocks, occurs in the following four different microstructural situations with different chemical compositions: (i) relatively undeformed porphyroclasts, (ii) dynamically recrystallized grains and subgrains rimming the porphyroclasts, (iii) infill of microcracks cross-cutting the porphyroclasts and (iv) fine-grained recrystallized grains in the matrix of the shear zones. The differences in the An and Ba contents are caused by partial chemical equilibration of plagioclase in the shear zones during and partly after deformation. Changes in An and Ba contents were caused by fluid-assisted grain-boundary migration recrystallization, as well as by solid-state diffusion, while fluid activity was high. The relation between the composition and microstructures of the plagioclase in the shear zones indicates that in the different shear zones, fluids ceased to be active during different stages in the late shear zone deformation history.
The interpretation of the variations in composition and microstructures reveals that only grains that developed by grain-boundary migration recrystallization and that are not adjacent to porphyroclasts reflect P-T conditions during the dominant shear-zone deformation.  相似文献   

12.
Deep crustal extensional faulting in the Ivrea Zone of Northern Italy   总被引:1,自引:0,他引:1  
K.H. Brodie  E.H. Rutter 《Tectonophysics》1987,140(2-4):193-212
The Ivrea Zone in Northern Italy consists of amphibolite and granulite facies metasedimentary, metabasic, and ultrabasic rocks, and is thought to represent a section through the deep continental crust. Detailed mapping of the high grade part of this zone has revealed a series of high temperature shear zones, which, after the effects of later low temperature faulting and folding have been removed, appears to accommodate extension of the sequence. The shear zones formed at temperatures similar to those at which thermal equilibration occurred in the host rocks, and locally show evidence for development under prograde conditions. These observations fit well with thermal effects calculated from a simple heat flow model for extensional faulting. In this model the effects of shear heating and displacement of cool hanging-wall rocks against hotter footwall rocks are calculated.

These observations indicate that faulting as a mode of failure may be important during extension of the lower continental crust, especially when basic rocks are the dominant components of the rock pile. A restored section through the extended lower crust as observed in the Ivrea Zone is presented, and the extent to which the features observed are able to explain seismic reflectivity of the lower crust is discussed.  相似文献   


13.
Geochemistry of biotites from granitic rocks,Northern Portugal   总被引:2,自引:0,他引:2  
The biotites from a series of rocks ranging in composition from tonalite to granite have been analysed for both major and trace elements.The relations between chemical composition and paragenesis of the biotites are studied. Most biotites co-exist with potassium feldspar and ilmenite. Variations in composition can be correlated with the occurrence of amphibole, primary muscovite and aluminosilicates in the rocks.Variation diagrams of the trace element contents and element ratios of biotite are compared to those of the host rocks. Fractionation of elements can be defined more accurately as the influence of other mineral phases is eliminated.Variations in the proportions of the octahedrally co-ordinated Al, Ti and Fe3+ are correlated with the conditions of crystallization and comparisons made with biotites from other suites of calc-alkali rocks.In the light of the experimental data available, the petrographic observations and the chemical data it is apparent that biotites crystallized from systems in which fO2 was buffered, its values remaining close to that of the buffer FMQ. From the same data, a temperature of 800°C for fO2 = 10?14to 10?15 bars is deduced as prevalent during the crystallization of the tonalites while for the granites, at a temperature of crystallization of 680°C, fO2 = 10?16to 10?18 bars.A calc-alkali trend of fractionation is therefore apparent with decreasing fO2 while fH2O2 remains relatively high.  相似文献   

14.
Two types of pseudotachylytes are observed in the Balmuccia peridotite of the Ivrea zone (Southern Alps, Italy). A-type pseudotachylytes correspond to previously studied occurrences and were formed under temperatures comprising between 550 and 900 °C and pressures comprising between 0.6 and 1.2 GPa. These conditions were met in the Ivrea crust between 350 and 270 Ma, suggesting that A-type pseudotachylytes were formed during Variscan tectonics or Permian transtensional tectonics. B-type pseudotachylytes post-date A-type pseudotachylytes. Textural characteristics of B-type veins suggest a formation in the upper continental crust, at depths of about 5–10 km or less. Petrological constraints indicate that the exhumation of the Ivrea crust at such shallow depths was achieved later than c.  70 Ma, thus providing a maximum age of 70 Ma for B-type veins. Pseudotachylytes appear as markers of the poly-orogenic evolution of the Alpine belt.  相似文献   

15.
Emplacement of mantle-derived magma (magmatic accretion) isoften presumed or inferred to be an important cause of regionalgranulite facies metamorphism and crustal anatexis. The juxtapositionof mafic cumulates and regionally distributed granulite faciesrocks has led some to consider the Ivrea zone (northern Italy,Southern Alps) as an important exposure that demonstrates thiscausal relationship. However, regional PTt paths indicated bymetamorphic reaction textures and PT conditions inferred fromgeothermobarometry indicate that the emplacement of mafic plutonicrocks (Mafic Complex) at the Ivrea zone occurred during decompressionfrom ambient pressures at the regional thermal maximum. Fieldand petrographic observations, supported by PT estimates, indicatethat regional retrograde decompression and emplacement of theupper parts of the Mafic Complex probably accompanied extensionduring the Late Carboniferous–Early Permian. A spatiallyrestricted decompression-melting event accompanied final emplacement,depleting supracrustal rocks enclosed by an  相似文献   

16.
Zhang  Yan  Wei  Xun  Xu  Yi-Gang  Long  Xiao-Ping  Shi  Xue-Fa  Zhao  Jian-Xin  Feng  Yue-Xing 《Mineralogy and Petrology》2017,111(2):237-252
Mineralogy and Petrology - The composition of lower crust of the Tarim Craton in NW China is essential to understand the petrogenesis of the ~290–275 Ma Tarim basalts and...  相似文献   

17.
Summary Orthopyroxenes of a high temperature protomylonite of the Ivrea Zone, Northern Italy show twin like polysynthetic lamellae parallel to {210} of the hypersthene host. The transformation is caused by plastic deformation under high metamorphic conditions which has resulted in dynamic recrystallization of pyroxene and plagioclase. The lamellae consist of clinohypersthene. The twin plane and the lamellar clino-ortho-inversion of hypersthene due to natural deformation have not been described hitherto.
Stressinduzierte natürliche Transformation von ortho- zu Klinohypersthen in Metagabbros der Ivrea-Zone, Norditalien
Zusammenfassung Orthopyroxene aus hoch temperierten Protomyloniten der Ivrea-Zone, Nord Italien zeigen polysynthetische Lamellen parallel {210} des Wirtes. Ihr Erscheinungsbild entspricht Deformationszwillingen. Die Lamellen sind invertiert zu Klinohypersthen. Die Ortho-Klino-Transformation ist auf eine Hochtemperaturdeformation zurückzuführen, wie dies anhand der dynamischen Rekristallisation der Pyroxene und Plagioklase bewiesen werden kann. Weder die speziellen Verwachsungsflächen noch die Ortho-Klino-Inversion durch natürliche Deformation wurden bisher beschrieben.
  相似文献   

18.
The Ivrea-Verbano Zone in northern Italy represents a section through the lower continental crust which has been tilted and emplaced into its present position during the Alpine orogeny. Recent and on-going structurally-oriented geological mapping in this region is providing new information about the geometry of the complex. The central part of the zone is dominated by a large basic complex (the 'mafic formation') which is intrusive into the surrounding gneisses. The foliation within the envelope of gneisses is deflected around the intrusive complex as if by ballooning, but in the region south-west of Monte Capio both units are folded together into a tight to isoclinal steeply plunging fold with an amplitude of c. 10 km. This fold locally inverts the stratigraphy of the layered basic group of the complex, and is thought to be the result of gravitational collapse following intrusion and inflation of a large magma body into the lower crust.
Several high-temperature shear zones have now been traced within the country rock for distances up to 20 km. The geometry of these, and their relationship to the basic complex suggests that at least some of the extensional collapse of the mafic body is related to uplift caused by intrusion of this body.
Close parallels can be drawn between the observed structure in the Ivrea-Verbano Zone (after removing the effects of late, low-temperature faulting and folding related to emplacement of the rocks into their present position), and those inferred from deep seismic reflection profiling in areas of current extension such as parts of the US Basin and Range province.  相似文献   

19.
The trace element distribution in three selected olivine-bearing gabbros from the Northern Apennine ophiolites has been determined. These rocks consist of euhedral plagioclase and olivine, and subhedral to poikilitic clinopyroxene. Fe-Ti-oxides, titanian pargasite, orthopyroxene and apatite occur as interstitial accessory minerals. Plagioclase, clinopyroxene and accessory minerals were analysed for rare earth (REE) and selected trace elements by secondary ion mass spectrometry. Both plagioclase and clinopyroxene are compositionally zoned. The plagioclase rims have slightly lower anorthite component and higher light REE (LREE), Ba and K than the cores. Likewise, the clinopyroxene rims show a slight Mg and Cr decrease, and a marked increase in Zr, REE and Y relative to the core. The rims of plagioclase and clinopyroxene, Fe-Ti-oxides, apatite and titanian pargasite most likely formed through post-cumulus fractional crystallization of interstitial liquid. It is argued that such interstitial liquid had an exotic component, probably related to the infiltration of highly evolved, slightly LREE enriched liquid in the cumulate pile. On the basis of mass balance calculations, we show that Fe-Ti-oxides play an important role in the Ti budget of the whole rock, as does apatite for LREE. Received: 15 January 1998 / Accepted: 22 September 1998  相似文献   

20.
In the Lower Saxonian Basin, cores from three drill holes provide a cross-section from the basin centre towards the margin through the upper Barremian/lowermost Aptian pyritic claystones and marls. Microscopic analyses distinguish six types of pyrite (I: ‘cones and tubes’, II: ‘tubes’, III: ‘isometric crystal aggregates’, IV: ‘pseudomorphs of fossils’, V: ‘star-like concretions’, and VI: ‘filiform pyrite-marcasite intergrowths’) which are associated with subordinate amounts of Fe carbonate, chalcopyrite, sphalerite and wurtzite. The crystal morphology of these sulphides shows a clear-cut diagenetic sequence from pyrite crystals dominated by the octahedron to those dominated by the cube. Among these early to late diagenetic pyrites, the conversion of crystal habits is accompanied by a striking variation in trace element contents, some of which have extremely low values (e.g. Au, Se, Te, Tl, Co). In this context, classification of crystal habits and analyses of As and Ni establishes a sequence of pyritization which may help define a basin zonation for these argillaceous sedimentary rocks, categorized as ‘normal facies’—oxygenated bottom waters—interrupted by short episodes of bottom water oxygen depletion (‘bituminous facies’). Substitution of the cube for the octahedron in the Fe bisulphide aggregates led to a continuous removal of As and Ni from the pyrite, attesting to a steady decrease of those elements in the pore fluids with time. By contrast, within each type of pyrite, As and Ni contents increase from the margin towards the centre of the basin, owing to pre-concentration of both elements in the basinal sediments, which are more abundant in organic matter. Some other elements, however, such as Mn, Cu, Sb and Ag, do not follow this trend and are unrelated to the lattice transformation of the Fe bisulphides. Their sometimes anomalously high quantities in Fe bisulphides are controlled by the host rock chemistry (presence of volcaniclastic material) and accessory minerals intergrown with pyrite (e.g. chalcopyrite). Pyrite I through III formed in tubular hollows of burrowing organisms, and type IV in tests of fossils. Types V and VI did not result from replacement or void filling but were generated by diffusion of sulphate along inhomogeneties, such as bedding planes, shrinkage cracks or water escape structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号