首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce a three-dimensional version of Hill’s problem with oblate secondary, determine its equilibrium points and their stability and explore numerically its network of families of simple periodic orbits in the plane, paying special attention to the evolution of this network for increasing oblateness of the secondary. We obtain some interesting results that differentiate this from the classical problem. Among these is the eventual disappearance of the basic family g′ of the classical Hill problem and the existence of out-of-plane equilibrium points and a family of simple-periodic plane orbits non-symmetric with respect to the x-axis.  相似文献   

2.
We explore the effect of oblateness of Saturn (more massive primary) on the periodic orbits and the regions of quasi-periodic motion around both the primaries in the Saturn-Titan system in the framework of planar circular restricted three-body problem. First order interior and exterior mean motion resonances are located. The effect of oblateness is studied on the location, nature and size of periodic and quasi-periodic orbits, using the numerical technique of Poincare surface of sections. Some of the periodic orbits change to quasi-periodic orbits due to the effect of oblateness and vice-versa. The stability of the orbits around Saturn, Titan and both varies with the inclusion of oblateness. The centers of the periodic orbits around Titan move towards Saturn, whereas those around Saturn move towards Titan. For the orbit around Titan at C=2.9992, x=0.959494, the apocenter becomes pericenter. By incorporating oblateness effect, the orbit around Titan at C=2.99345, x=0.924938 is captured by Saturn, remains in various trajectories around Saturn, and as time progresses it spirals away around both the primaries.  相似文献   

3.
We study the multiple periodic orbits of Hill’s problem with oblate secondary. In particular, the network of families of double and triple symmetric periodic orbits is determined numerically for an arbitrary value of the oblateness coefficient of the secondary. The stability of the families is computed and critical orbits are determined. Attention is paid to the critical orbits at which families of non-symmetric periodic orbits bifurcate from the families of symmetric periodic orbits. Six such bifurcations are found, one for double-periodic and five for triple-periodic orbits. Critical orbits at which families of sub-multiple symmetric periodic orbits bifurcate are also discussed. Finally, we present the full network of families of multiple periodic orbits (up to multiplicity 12) together with the parts of the space of initial conditions corresponding to escape and collision orbits, obtaining a global view of the orbital behavior of this model problem.  相似文献   

4.
We consider a model that describes the evolution of distant satellite orbits and that refines the solution of the doubly averaged Hill problem. Generally speaking, such a refinement was performed previously by J. Kovalevsky and A.A. Orlov in terms of Zeipel’s method by constructing a solution of the third order with respect to the small parameter m, the ratio of the mean motions of the planet and the satellite. The analytical solution suggested here differs from the solutions obtained by these authors and is closest in form to the general solution of the doubly averaged problem (∼m 2). We have performed a qualitative analysis of the evolutionary equations and conditions for the intersection of satellite orbits with the surface of a spherical planet with a finite radius. Using the suggested solution, we have obtained improved analytical time dependences of the elements of evolving orbits for a number of distant satellites of giant planets compared to the solution of the doubly averaged Hill problem and, thus, achieved their better agreement with the results of our numerical integration of the rigorous equations of perturbed motion for satellites.  相似文献   

5.
We consider the bifurcation of 3D periodic orbits from the plane of motion of the primaries in the restricted three-body problem with oblateness. The simplest 3D periodic orbits branch-off at the plane periodic orbits of indifferent vertical stability. We describe briefly suitable numerical techniques and apply them to produce the first few such vertical-critical orbits of the basic families of periodic orbits of the problem, for varying mass parameter and fixed oblateness coefficent A1 = 0.005, as well as for varying A1 and fixed = 1/2. The horizontal stability of these orbits is also determined leading to predictions about the stability of the branching 3D orbits.  相似文献   

6.
We consider the photogravitational restricted three-body problem with oblateness and study the Sitnikov motions. The family of straight line oscillations exists only in the case where the primaries are of equal masses as in the classical Sitnikov problem and have the same oblateness coefficients and radiation factors. A perturbation method based on Floquet theory is applied in order to study the stability of the motion and critical orbits are determined numerically at which families of three-dimensional periodic orbits of the same or double period bifurcate. Many of these families are computed.  相似文献   

7.
The motion of a satellite around a planet can be studied by the Hill model, which is a modification of the restricted three body problem pertaining to motion of a satellite around a planet. Although the dynamics of the circular Hill model has been extensively studied in the literature, only few results about the dynamics of the elliptic model were known up to now, namely the equations of motion and few unstable families of periodic orbits. In the present study we extend these results by computing a large set of families of periodic orbits and their linear stability and classify them according to their resonance condition. Although most of them are unstable, we were able to find a considerable number of stable ones. By computing appropriate maps of dynamical stability, we study the effect of the planetary eccentricity on the stability of satellite orbits. We see that, even for large values of the planetary eccentricity, regular orbits can be found in the vicinity of stable periodic orbits. The majority of irregular orbits are escape orbits.  相似文献   

8.
We have studied periodic orbits generated by Lagrangian solutions of the restricted three body problem when one of the primaries is an oblate body. We have determined the periodic orbits for different values of μ, h and A (h is energy constant, μ is mass ratio of the two primaries and A is an oblateness factor). These orbits have been determined by giving displacements along the tangent and normal to the mobile coordinates as defined by Karimov and Sokolsky (Celest. Mech. 46:335, 1989). These orbits have been drawn by using the predictor-corrector method. We have also studied the effect of oblateness by taking some fixed values of μ, A and h. As starters for our method, we use some known periodic orbits in the classical restricted three body problem.  相似文献   

9.
In this paper, computation of the halo orbit for the KS-regularized photogravitational circular restricted three-body problem is carried out. This work extends the idea of Srivastava et al. (Astrophys. Space Sci. 362: 49, 2017) which only concentrated on the (i) regularization of the 3D-governing equations of motion, and (ii) validation of the modeling for small out-of-plane amplitude (\(A_z =110000\) km) assuming the third-order analytical approximation as an initial guess with and without differential correction. This motivated us to compute the halo orbits for the large out-of-plane amplitudes and to study their stability analysis for the regularized motion. The stability indices are described as a function of out-of-plane amplitude, mass reduction factor and oblateness coefficient. Three different Sun–planet systems: the Sun–Earth, Sun–Mars and the Sun–Jupiter are chosen in this study. Stable halo orbits do not exist around the \(L_{1}\) point, however, around the \(L_{2}\) point stable halo orbits are found for the considered systems.  相似文献   

10.
We continue to analyze the periodic solutions of the singly averaged Hill problem. We have numerically constructed the families of solutions that correspond to periodically evolving satellite orbits for arbitrary initial values of their eccentricities and inclinations to the plane of motion of the perturbing body. The solutions obtained are compared with the numerical solutions of the rigorous (nonaveraged) equations of the restricted circular three-body problem. In particular, we have constructed a periodically evolving orbit for which the well-known Lidov-Kozai mechanism manifests itself, just as in the doubly averaged problem.  相似文献   

11.
We study the existence, linear stability and bifurcations of what we call the Sitnikov family of straight line periodic orbits in the case of the restricted four-body problem, where the three equal mass primary bodies are rotating on a circle and the fourth (small body) is moving in the direction vertical to the center mass of the other three. In contrast to the restricted three-body Sitnikov problem, where the Sitnikov family has infinitely many stability intervals (hence infinitely many Sitnikov critical orbits), as the “family parameter” ż0 varies within a finite interval (while z 0 tends to infinity), in the four-body problem this family has only one stability interval and only twelve 3-dimensional (3D) families of symmetric periodic orbits exist which bifurcate from twelve corresponding critical Sitnikov periodic orbits. We also calculate the evolution of the characteristic curves of these 3D branch-families and determine their stability. More importantly, we study the phase space dynamics in the vicinity of these orbits in two ways: First, we use the SALI index to investigate the extent of bounded motion of the small particle off the z-axis along its interval of stable Sitnikov orbits, and secondly, through suitably chosen Poincaré maps, we chart the motion near one of the 3D families of plane-symmetric periodic orbits. Our study reveals in both cases a fascinating structure of ordered motion surrounded by “sticky” and chaotic orbits as well as orbits which rapidly escape to infinity.  相似文献   

12.
We present a study of the restricted three body problem with logarithm potential. We discuss equilibria, stability, Hill’s regions of motion and the families of periodic orbits near equilibria. Moreover, we show that equilibria and some periodic orbits continue in the logarithm three body problem.  相似文献   

13.
We present an improved grid search method for the global computation of periodic orbits in model problems of Dynamics, and the classification of these orbits into families. The method concerns symmetric periodic orbits in problems of two degrees of freedom with a conserved quantity, and is applied here to problems of Celestial Mechanics. It consists of two main phases; a global sampling technique in a two-dimensional space of initial conditions and a data processing procedure for the classification (clustering) of the periodic orbits into families characterized by continuous evolution of the orbital parameters of member orbits. The method is tested by using it to recompute known results. It is then applied with advantage to the determination of the branch families of the family f of retrograde satellites in Hill’s Lunar problem, and to the determination of irregular families of periodic orbits in a perturbed Hill problem, a species of families which are difficult to find by continuation methods.   相似文献   

14.
At critical mass the triangular equilibria in the planar restricted three-body problem, when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion, are in general unstable due to the presence of secular terms in the solutions of linearized equations of motion in the vicinity of these points. Existence of retrograde elliptic periodic orbits is established through suitable velocity components. The eccentricity of these orbits increases with the oblateness.  相似文献   

15.
A systematic numerical exploration of the families of asymmetric periodic orbits of the restricted three-body problem when a) the primary bodies are equal and b) for the Earth-Moon mass ratio, is presented. Decades families of asymmetric periodic solutions were found and three of the simplest ones, in the first case, and ten of the second one are illustrated. All of these families consist of periodic orbits which are asymmetric with respect to x-axis while are simple symmetric periodic orbits with respect to y-axis (i.e. the orbit has only one perpendicular intersection at half period with y-axis). Many asymmetric periodic orbits, members of these families, are calculated and plotted. We studied the stability of all the asymmetric periodic orbits we found. These families consist, mainly, of unstable periodic solutions but there exist very small, with respect to x, intervals where these families have stable periodic orbits. We also found, using appropriate Poincaré surface of sections, that a relatively large region of phase space extended around all these stable asymmetric periodic orbits shows chaotic motion.  相似文献   

16.
We present some results of a numerical exploration of the rectilinear problem of three bodies, with the two outer masses equal. The equations of motion are first given in relative coordinates and in regularized variables, removing both binary collision singularities in a single coordinate transformation. Among our most important results are seven periodic solutions and three symmetric triple collision solutions. Two of these periodic solutions have been continued into families, the outer massm 3 being the family parameter. One of these families exists for all masses while the second family is a branch of the first at a second-kind critical orbit. This last family ends in a triple collision orbit.Proceedings of the Sixth Conference on Mathematical Methods in Celestial Mechanics held at Oberwolfach (West Germany) from 14 to 19 August, 1978.  相似文献   

17.
The canonical equations of motion of an artificial lunar satellite are formulated including the effects of the asphericity of the Moon comprising the harmonics J 2, J 22, J 3, J 31, J 4 andJ 5, the oblateness of the Earth up to the second zonal harmonic, as well as the disturbing function due to the attractions of the Earth and of the Sun (terms are retained up to order 10-6 for the higher orbits and 10-8 for the lower orbits). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We analyze the stability of periodic solutions for Hill’s double-averaged problem by taking into account a central planet’s oblateness. They are generated by steady-state solutions that are stable in the linear approximation. By numerically calculating the monodromy matrix of variational equations, we plot its trace against the integral of the problem—an averaged perturbing function, for two model systems, [(Sun + Moon)-Earth-satellite] and (Sun-Uranus-satellite). We roughly estimate the ranges of values for the parameters of satellite orbits corresponding to periodic solutions of the evolutionary system that are stable in the linear approximation.  相似文献   

19.
This paper studies the asymmetric solutions of the restricted planar problem of three bodies, two of which are finite, moving in circular orbits around their center of masses, while the third is infinitesimal. We explore, numerically, the families of asymmetric simple-periodic orbits which bifurcate from the basic families of symmetric periodic solutions f, g, h, i, l and m, as well as the asymmetric ones associated with the families c, a and b which emanate from the collinear equilibrium points L 1, L 2 and L 3 correspondingly. The evolution of these asymmetric families covering the entire range of the mass parameter of the problem is presented. We found that some symmetric families have only one bifurcating asymmetric family, others have infinity number of asymmetric families associated with them and others have not branching asymmetric families at all, as the mass parameter varies. The network of the symmetric families and the branching asymmetric families from them when the primaries are equal, when the left primary body is three times bigger than the right one and for the Earth–Moon case, is presented. Minimum and maximum values of the mass parameter of the series of critical symmetric periodic orbits are given. In order to avoid the singularity due to binary collisions between the third body and one of the primaries, we regularize the equations of motion of the problem using the Levi-Civita transformations.  相似文献   

20.
In this paper, we study the existence of libration points and their linear stability when the three participating bodies are axisymmetric and the primaries are radiating, we found that the collinear points remain unstable, it is further seen that the triangular points are stable for 0<μ<μ c , and unstable for where , it is also observed that for these points the range of stability will decrease. In addition to this we have studied periodic orbits around these points in the range 0<μ<μ c , we found that these orbits are elliptical; the frequencies of long and short orbits of the periodic motion are affected by the terms which involve parameters that characterize the oblateness and radiation repulsive forces. The implication is that the period of long periodic orbits adjusts with the change in its frequency while the period of short periodic orbit will decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号