首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The White method, routinely used to estimate phreatophyte transpiration from diel groundwater variation, also provides measures of total evapotranspiration (ET) and groundwater fluxes in surface waters. Such applications remain rare, however, and critically require accurate representation of stage‐dependent variation in specific yield (Sy). High‐resolution stage data from three Florida swamps were used to evaluate different relationships between Sy and stage (ecosystem specific yield, ESY). A discretized form, ESYD, assumes constant Sy near unity for inundated conditions, applying soil Sy for belowground stage and open water Sy (Sy,OW ≈ 1.0) for aboveground stage. A mixture approach, ESYM, applies a stage‐dependent interpolation between Sy,Soil and Sy,OW using stage‐area relationships and assumes rapid lateral equilibration between inundated and non‐inundated wetland areas. Finally, an empirical formulation, ESYRR, uses measured ratios of rain to rise to estimate stage‐specific Sy. All formulations yielded reasonable ET rates (ET ≈ PET) at high stage; ESYD markedly overestimated ET (ET/PET > 3) at intermediate stage, whereas ESYM and ESYRR maintained ET/PET near 1.0. Estimated groundwater fluxes using ESYM and ESYRR correlated well with Darcy‐estimated flows, but were larger, likely due to uncertainties in Darcy parameters. Well transects across wetlands documented equal water elevation and diel variation across inundated and non‐inundated areas, verifying rapid equilibration that reduces Sy and explaining overestimation by ESYD. However, equilibration area varied within and among wetlands, explaining observed differences between ESYM and ESYRR, and suggesting ESYRR may be preferred. Stage histograms followed the shape of ESYRR, highlighting reciprocal influences of ESY on stage stability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Z. X. Xu  J. Y. Li 《水文研究》2003,17(8):1509-1523
In large river basins, there may be considerable variations in both climate and land use across the region. The evapotranspiration that occurs over a basin may be drastically different from one part of the region to another. The potential influence of these variations in evapotranspiration estimated for the catchment is weakened by using a spatially based distributed hydrological model in such a study. Areal evapotranspiration is estimated by means of approaches requiring only meteorological data: the combination equation (CE) model and the complementary relationship approach—the complementary relationship areal evapotranspiration (CRAE) and advection–aridity (AA) models. The capability of three models to estimate the evapotranspiration of catchments with complex topography and land‐use classification is investigated, and the models are applied to two catchments with different characteristics and scales for several representative years. Daily, monthly, and annual evapotranspiration are estimated with different accuracy. The result shows that the modified CE model may underestimate the evapotranspiration in some cases. The CRAE and AA models seem to be two kinds of effective alternatives for estimating catchment evapotranspiration. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Summary Acoustic gravity waves, propagating over a spherical earth with an isothermal and windless atmosphere, are considered. The perturbed pressure is expressed as a sum of discrete modes which are shown to be orthogonal. It is found that the excitation for the modes is determined by the specified normal particle velocity over a conical surface enclosing the source. One of the modes excited is shown to have characteristics closely akin to a Lamb wave on a flat earth for an isothermal atmosphere.This work was carried out while the author was a visiting professor at Harvard University.  相似文献   

4.
Summary The problem of a periodic point source in a homogeneous liquid layer overlying a heterogeneous liquid half-space is discussed. After obtaining the formal solution, the path of integration for the displacement potential of the layer is transformed from the positive real axis to the positive imaginary axis and the Sommerfeld contour and the latter is further distorted to the modified Sommerfeld contour. The residues of the integrand at the poles contained within the Sommerfeld loop constitute the normal mode solution to the problem. The integrands in the expressions for the integrals along the imaginary axis are expanded in a series of negative powers of exponentials and then some of the terms in these expansions are evaluated approximately. This gives various waves reflected from the interface and the integral along the Sommerfeld loop vanishes. The frequency equation is obtained, also by the principle of constructive interference. An expression for the reflection coefficient at an interface of two liquid media, the upper medium being homogeneous and the lower one inhomogeneous, is obtained.  相似文献   

5.
Quantifying and partitioning evapotranspiration (ET) into evaporation and transpiration is challenging but important for interpreting vegetation effects on the water balance. We applied a model based on the theory of maximum entropy production to estimate ET for shrubs for the first time in a low‐energy humid headwater catchment in the Scottish Highlands. In total, 53% of rainfall over the growing season was returned to the atmosphere through ET (59 ± 2% as transpiration), with 22% of rainfall ascribed to interception loss and understory ET. The remainder of rainfall percolated below the rooting zone. The maximum entropy production model showed good capability for total ET estimation, in addition to providing a first approximation for distinguishing evaporation and transpiration in such ecosystems. This study shows that this simple and low‐cost approach has potential for local to regional ET estimation with availability of high‐resolution hydroclimatic data. Limitations of the approach are also discussed.  相似文献   

6.
The estimation of evapotranspiration (E) in forested areas is required for various practical purposes (e.g. evaluation of drought risks) in Japan. This study developed a model that estimates monthly forest E in Japan with the input of monthly temperature (T). The model is based on the assumptions that E equals the equilibrium evaporation rate (Eeq) and that Eeq is approximated by a function of T. The model formulates E as E (mm month−1) = 3·48 T ( °C) + 32·3. The accuracy of the model was examined using monthly E data derived using short‐term water balance (WB) and micrometeorological (M) methods for 15 forest sites in Japan. The model estimated monthly E more accurately than did the Thornthwaite and Hamon equations according to regression analysis of the estimated E and E derived using the WB and M methods. Although the model tended to overestimate monthly E, the overestimation could be reduced by considering the effect of precipitation on E. As T data are commonly available all over Japan, the model would be a useful tool to estimate forest E in Japan. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
为探究淡水湖库及其所属流域蒸散发演变特征,以及气象因子对蒸散发的影响规律。以长三角地区最大的淡水人工湖和重要的水源地——千岛湖为研究对象,采用Penman-Monteith等方法与WEP-L分布式水文模型,分别计算千岛湖流域1960—2020年潜在蒸散发(ET0)与实际蒸散发(ETa),分析二者年际变化趋势及突变年份;采用偏微分方法分析气象因子对ET0的敏感性和贡献度;采用归因分析法分析突变前后气象因子对ETa变化的贡献度,并利用蒸发表面水分指数(EM1)解析流域蒸发互补关系。结果表明:ET0与ETa多年平均值分别为1021.7和857.5 mm,整体皆呈减少趋势,倾向率分别为-0.77和-1.03 mm/a,二者均在1980和2000年左右发生突变;ET0对相对湿度变化最为敏感,ET0增加的月份主要是由于相对湿度、平均气温的正贡献,风速呈负贡献但相对较小,ET0减少的...  相似文献   

8.
9.
The hydrological contribution to polar motion is a major challenge in explaining the observed geodetic residual of non-atmospheric and non-oceanic excitations since hydrological models have limited input of comprehensive global direct observations. Although global terrestrial water storage (TWS) estimated from the Gravity Recovery and Climate Experiment (GRACE) provides a new opportunity to study the hydrological excitation of polar motion, the GRACE gridded data are subject to the post-processing de-striping algorithm, spatial gridded mapping and filter smoothing effects as well as aliasing errors. In this paper, the hydrological contributions to polar motion are investigated and evaluated at seasonal and intra-seasonal time scales using the recovered degree-2 harmonic coefficients from all GRACE spherical harmonic coefficients and hydrological models data with the same filter smoothing and recovering methods, including the Global Land Data Assimilation Systems (GLDAS) model, Climate Prediction Center (CPC) model, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis products and European Center for Medium-Range Weather Forecasts (ECMWF) operational model (opECMWF). It is shown that GRACE is better in explaining the geodetic residual of non-atmospheric and non-oceanic polar motion excitations at the annual period, while the models give worse estimates with a larger phase shift or amplitude bias. At the semi-annual period, the GRACE estimates are also generally closer to the geodetic residual, but with some biases in phase or amplitude due mainly to some aliasing errors at near semi-annual period from geophysical models. For periods less than 1-year, the hydrological models and GRACE are generally worse in explaining the intraseasonal polar motion excitations.  相似文献   

10.
Reference evapotranspiration (ET) is an important parameter that needs to be estimated accurately to enhance its utility in numerous applications. Although the widely recommended procedure for calculating this index involves using the FAO Penman–Monteith equation (ETo), the latter’s effectiveness is constrained by its considerable data requirements. To overcome this constraint, alternative methods using the limited data available have to be explored. In this study the ability of the Hargreaves and Samani (ETHS) and Thornthwaite (ETT) equations to estimate ET was investigated using multi-year data (1999–2008) from eight weather stations in the semi-arid Free State Province of South Africa. Results for non-calibrated equations are closely correlated, with ETHS tending to underestimate ET for the July to December period while ETT underestimates ET for all months of the calendar year. Although estimates from calibrated equations are also closely correlated, they have smaller deviations compared to the original equations with the calibrated Hargreaves and Samani equation (ETCHS) estimating reference evapotranspiration better than its calibrated Thornthwaite (ETCT) counterpart. The former’s better performance suggests that in data-scarce areas, the Hargreaves and Samani model is capable of giving results within acceptable ranges of accuracy.  相似文献   

11.
ABSTRACT

Over the last decade, monoculture plantations have rapidly developed in Jambi Province on Sumatra, Indonesia. Meanwhile, there has been intensification of discharge fluctuation in the study area. We examined the relative contribution of changes in evapotranspiration and soil compaction to the catchment discharge by using the Soil Water Assessment Tool model. Evapotranspiration values based on the catchment water balance analysis in intensively cultivated oil palm plantations, smallholder oil palm plantations, rubber plantations, and the secondary forest are 5.03 ± 0.30, 4.11 ± 0.38, 3.36 ± 0.32, and 4.50 ± 0.18 mm d?1, respectively. Infiltration rate in active interrows of oil palm, rubber plantations, agroforest, oil palm frond pile is 2.6 ± 1.7, 16.3 ± 6.8, 28.0 ± 3.9, 58.2 ± 21.8 cm h?1, respectively. We found that increased evapotranspiration and soil compaction increased the frequency of low discharge by 30%, with increased evapotranspiration contributing 10% and increased soil compaction contributing 20%.  相似文献   

12.
Evapotranspiration (ET) is one of the major processes in the hydrological cycle, and its reliable estimation is essential to water resources management. Numerous equations have been developed for estimating ET, most of which are complex and require numerous items of weather data. In many areas, the necessary data are lacking, and simpler techniques are required. Evaporation pans are used throughout the world because of the simplicity of technique, low cost, and ease of application. In this study, the radial basis function (RBF) network is applied for pan evaporation to evapotranspiration conversions. The adaptive pan‐based RBF network was trained using daily Policoro data from 15 May 1981 to 23 December 1983. The RBF network obtained, Christiansen, FAO‐24 pan, and FAO‐56 Penman–Monteith equations were verified in comparison with lysimeter measurements of grass evapotranspiration using daily Policoro data from 25 February to 18 December 1984. Based on summary statistics, the RBF network ranked first with the lowest RMSE value (0·433 mm day?1). The RBF network obtained on the basis of the daily data from Policoro, Italy and pan‐based equations were further tested using mean monthly data collected in Novi Sad, Serbia, and Kimberly, Idaho, USA. The overall results favoured use of the RBF network for pan evaporation to evapotranspiration conversions. The use of the RBF network is very simple and does not require any knowledge of ANNs. Users require only code (RBF network), Epan data and corresponding Ra data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Future changes in reference evapotranspiration (ET0) are of increasing importance in assessing the potential impacts on hydrology and water resources systems of more pronounced climate change. This study assesses the applicability of the Statistical Downscaling Model (SDSM) in projecting ET0, and investigates the seasonal and spatial patterns of future ET0 based on general circulation models (GCMs) across the Haihe River Basin. The results indicate that SDSM can downscale ET0 well in term of different basin-averaged measures for the HadCM3 and CGCM3 GCMs. HadCM3 has a much superior capability in capturing inter-annual variability compared to CGCM3 and thus is chosen as the sole model to assess the changes in future ET0. There are three homogeneous sub-regions of the Haihe River Basin: Northwest, Northeast and Southeast. Change points are detected at around 2050 and 2080 under the A2 and B2 scenarios, respectively. The Northwest is revealed to have a slight to strong increase in ET0, while the Northeast and the Southeast tend to experience a pattern change from decrease to increase in ET0.
EDITOR M.C. Acreman

ASSOCIATE EDITOR J. Thompson  相似文献   

14.
自2002年以来,GRACE卫星探测计划可提供高精度的时变地球重力场,用以探测地球系统的物质分布.自1998年中国大陆重力监测网建立以来,利用FG5绝对重力仪和LCR-G型相对重力仪每2年对该网进行重复测量获取重力场时变信息.基于此,本文利用GRACE和地面重力测量获得了中国大陆重力场的长期年变率,利用位错理论根据USGS发布的断层模型计算了2008年汶川Ms8.0级地震的同震重力变化并进行了300 km高斯滤波.GRACE卫星重力和地面重力结果均表明华北地区地下水流失严重,在绝对重力基准站上,GRACE卫星重力与绝对重力变化率较为一致,汶川区域的地面重力变化结果可视为大地震前兆信息.  相似文献   

15.
Coral reef fisheries are critical for food security and as a source of income in developing and developed countries, but they are collapsing in many areas. Following the emergence and routine availability of commercial very high spatial resolution (0.6-10 m) multispectral satellite images, we reviewed the use of these new high-quality remote sensing data and products for coral reef fisheries management. The availability of habitats maps improves management by guiding sampling strategies, mapping resources, involving local communities, identifying conservation areas, and facilitating Ecosystem Based Fishery Management (EBFM) approaches. However, despite their potential, very little use of products designed specifically for fishery management can be reported, likely due to high costs, inherent technology limitations and lack of awareness on the possibilities. Given the theoretical benefits brought by relevant habitat maps in EBFM frameworks, we advocate the use of adequate remote sensing products that integrate fishery technical services demands and local requirements.  相似文献   

16.

时变重力场是研究地球系统内部物质运动和时空演化过程的有效途径.目前广泛使用的GRACE时变重力场模型受限于其空间分辨率(约400 km),难以探测较小空间尺度的重力变化.本文首次尝试利用Slepian局部谱分析方法和多期地面重力观测确定更高空间分辨率的时变重力场模型.Slepian方法通过构建研究区域内的正交基函数,将信号能量集中在研究区域内部,是构建球面局部重力场模型的理想方法.本文根据Slepian方法的特点给出了区域重力场建模及参数优化的步骤,以我国华北地区为例,基于2011—2013多期地面观测确定了区域时变重力场模型,并与同区域由Slepian方法和GRACE卫星数据确定的重力变化进行了对比分析.结果表明:(1)贝叶斯信息量准则可作为确定Slepian展开最佳截断数的有效手段;(2)基于研究区域内现有重复测点数据,能够恢复120阶时变重力场,空间分辨率(半波长)约150 km;(3)2011—2013年间研究区域内GRACE估计结果与120阶地面结果在时空分布的显著趋势上存在较好的对应,证明了本文利用Slepian方法和地面观测所得时变重力场模型的可靠性.本文研究结果可为区域重力场建模提供新的参考,也可为华北地区水资源变化监测、构造活动分析以及地震风险性评估等研究提供高分辨率的时变重力场模型支撑.

  相似文献   

17.
Snow is important for water management, and an important component of the terrestrial biosphere and climate system. In this study, the snow models included in the Biome‐BGC and Terrestrial Observation and Prediction System (TOPS) terrestrial biosphere models are compared against ground and satellite observations over the Columbia River Basin in the US and Canada and the impacts of differences in snow models on simulated terrestrial ecosystem processes are analysed. First, a point‐based comparison of ground observations against model and satellite estimates of snow dynamics are conducted. Next, model and satellite snow estimates for the entire Columbia River Basin are compared. Then, using two different TOPS simulations, the default TOPS model (TOPS with TOPS snow model) and the TOPS model with the Biome‐BGC snow model, the impacts of snow model selection on runoff and gross primary production (GPP) are investigated. TOPS snow model predictions were consistent with ground and satellite estimates of seasonal and interannual variations in snow cover, snow water equivalent, and snow season length; however, in the Biome‐BGC snow model, the snow pack melted too early, leading to extensive underpredictions of snow season length and snow covered area. These biases led to earlier simulated peak runoff and reductions in summer GPP, underscoring the need for accurate snow models within terrestrial ecosystem models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
气候条件的变异和流域下垫面特征的改变是影响流域蒸散耗水的重要因素。本文聚焦于1900 2008年间全球83个典型流域数据,基于Budyko水热耦合平衡方程,探究100多年间不同条件下流域蒸散耗水率(AET/P)对气候和下垫面特征变异响应关系的稳定性。结果表明:(1)从长时间尺度看,大部分流域蒸散耗水率与气候干燥指数(PET/P)和流域特征参数(n值)变异的响应关系呈现较强的时间稳定性。从短时间尺度而言,半湿润流域内蒸散耗水率对干燥指数的响应系数?(AET/P)/?(PET/P)在20世纪内持续降低。不同气候条件下蒸散耗水率对流域特征参数的响应系数?(AET/P)/?(n)的变化差异显著。分不同下垫面特征来看,低n值(n<2)流域内AET/P对n值的变化更为敏感;(2)气候条件(PET/P)是大多数湿润区内蒸散耗水率的主导因素,在干旱与半干旱流域内,下垫面特征参数(n值)对AET/P贡献最大。在湿润区内,PET/P对AET/P的贡献程度随时间小幅提升;半湿润区内PET/P对AET/P的贡献度呈下降趋势。在低n值(n<2;流域持水能力较弱)流域内,n值对AET/P的贡献更多。在...  相似文献   

19.
Canopy interception and its evaporation into the atmosphere during irrigation or a rainfall event are important in irrigation scheduling, but are challenging to estimate using conventional methods. This study introduces a new approach to estimate the canopy interception from measurements of actual total evapotranspiration (ET) using eddy covariance and estimation of the transpiration from measurements of sap flow. The measurements were conducted over a small‐scale sprinkler‐irrigated cotton field before, during and after sprinkler irrigation. Evaporation and sap flow dynamics during irrigation show that the total ET during irrigation increased significantly because of the evaporation of free intercepted water while transpiration was suppressed almost completely. The difference between actual ET and transpiration (sap flow) during and immediately following irrigation (post irrigation) represents the total canopy evaporation while the canopy interception capacity was calculated as the difference between actual ET and transpiration (sap flow) during drying (post irrigation) following cessation of the irrigation. The canopy evaporation of cotton canopy was calculated as 0.8 mm, and the interception capacity was estimated to be 0.31 mm of water. The measurement uncertainty in both the non‐dimensional ET and non‐dimensional sap flow was shown to be very low. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Earthquakes play a fundamental role in the evolution of Earth's topography through co-seismic uplift and subsidence,as well as erosion through widespread landsl...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号