首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Within the KUSTOS program (Coastal Mass and Energy Fluxes-the Land-Sea Transition in the Southeastern North Sea) 28 to 36 German Bight stations were seasonally surveyed (summer 1994, spring 1995, winter 1995–1996) for light conditions, dissolved inorganic nutrient concentrations, chlorophylla (chla), and photosynthesis versus light intensity (P:E) parameters. Combining P:E curve characteristics with irradiance, attenuation, and chlorophyll data resulted in seasonal estimates of the spatial distribution of total primary production. These data were used for an annual estimate of the total primary production in the Bight. In winter 1996 the water throughout the German Bight was well mixed. Dissolved inorganic nutrient concentrations were relatively high (nitrogen [DIN], soluble reactive phosphorus [SRP], and silicate [Si]: 23, 1, and 10 μM, respectively). Chla levels generally were low (< 2 μg l−1) with higher concentrations (4–16 μg l−1) in North Frisian coastal waters. Phytoplankton was limited by light. Total primary production averaged 0.2 g C m−2 d−1. Two surveys in April and May 1995 captured the buildup of a strong seasonal thermo-cline accompained by the development of a typical spring diatom bloom. High nutrient levels in the mixed layer during the first survey (DIN, SRP, and Si: 46, 0.45, and 11 μM, respectively) decreased towards the second survey (DIN, SRP, and Si: 30.5, 0.12, and 1.5 μM, respectively) and average nutrient ratios shifted further towards highly imbalanced values (DIN:SRP: 136 in survey 1, 580 in survey 2; DIN:Si: 13.5 in survey 1, 96 in survey 2). Chla ranged from 2 to 16 μg l−1 for the first survey and rose to 12–50 μg l−1 in the second survey. Phytoplankton in nearshore areas continued to be light limited during the second survey, while data from the stratified regions in the open German Bight indicates SRP and Si limitation. Total primary production ranged from 4.0 to 6.3 g C m−2 d−1. During summer 1994 a strong thermal stratification was present in the German Bight proper and shallow coastal areas showed unusually warm (up to 22°C), mixed waters. Chla concentrations ranged from 2 to 18 μg l−1. P:E characteristics were relatively high despite the low nutrient regime (DIN, SRP, and Si: 2, 0.2, and 1.5 μM, respectively), resulting in overall high total primary production values with an average of 7.7 g C m−2 d−1. Based on the seasonal primary production estimates of the described surveys a budget calculation yielded a total annual production of 430 g C m−2 yr−1 for the German Bight.  相似文献   

2.
Deep Bay is a semienclosed bay that receives sewage from Shenzhen, a fast-growing city in China. NH4 is the main N component of the sewage (>50% of total N) in the inner bay, and a twofold increase in NH4 and PO4 concentrations is attributed to increased sewage loading over the 21-year period (1986–2006). During this time series, the maximum annual average NH4 and PO4 concentrations exceeded 500 and 39 μM, respectively. The inner bay (Stns DM1 and DM2) has a long residence time and very high nutrient loads and yet much lower phytoplankton biomass (chlorophyll (Chl) <10 μg L−1 except for Jan, July, and Aug) and few severe long-term hypoxic events (dissolved oxygen (DO) generally >2 mg L−1) than expected. Because it is shallow (~2 m), phytoplankton growth is likely limited by light due to mixing and suspended sediments, as well as by ammonium toxicity, and biomass accumulation is reduced by grazing, which may reduce the occurrence of hypoxia. Since nutrients were not limiting in the inner bay, the significant long-term increase in Chl a (0.52–0.57 μg L−1 year−1) was attributed to climatic effects in which the significant increase in rainfall (11 mm year−1) decreased salinity, increased stratification, and improved water stability. The outer bay (DM3 to DM5) has a high flushing rate (0.2 day−1), is deeper (3 to 5 m), and has summer stratification, yet there are few large algal blooms and hypoxic events since dilution by the Pearl River discharge in summer, and the invasion of coastal water in winter is likely greater than the phytoplankton growth rate. A significant long-term increase in NO3 (0.45–0.94 μM year−1) occurred in the outer bay, but no increasing trend was observed for SiO4 or PO4, and these long-term trends in NO3, PO4, and SiO4 in the outer bay agreed with those long-term trends in the Pearl River discharge. Dissolved inorganic nitrogen (DIN) has approximately doubled from 35–62 to 68–107 μM in the outer bay during the last two decades, and consequently DIN to PO4 molar ratios have also increased over twofold since there was no change in PO4. The rapid increase in salinity and DO and the decrease in nutrients and suspended solids from the inner to the outer bay suggest that the sewage effluent from the inner bay is rapidly diluted and appears to have a limited effect on the phytoplankton of the adjacent waters beyond Deep Bay. Therefore, physical processes play a key role in reducing the risk of algal blooms and hypoxic events in Deep Bay.  相似文献   

3.
The climatology and interannual variability of winter phytoplankton was analyzed at the Long Term Ecological Research Station MareChiara (LTER-MC, Gulf of Naples, Mediterranean Sea) using data collected from 1985 to 2006. Background winter chlorophyll values (0.2–0.5 μg chl a dm−3) were associated with the dominance of flagellates, dinoflagellates, and coccolithophores. Winter biomass increases (<5.47 μg chl a dm−3) were often recorded until 2000, generally in association with low-salinity surface waters (37.3–37.9). These blooms were most often caused by colonial diatoms such as Chaetoceros spp., Thalassiosira spp., and Leptocylindrus danicus. In recent years, we observed more modest and sporadic winter biomass increases, mainly caused by small flagellates and small non-colonial diatoms. The resulting negative chl a trend over the time series was associated with positive surface salinity and negative nutrient trends. Physical and meteorological conditions apparently exert a strict control on winter blooms, hence significant changes in winter productivity can be foreseen under different climatic scenarios.  相似文献   

4.
The Pomeranian Bay is a coastal region fed by the Oder River, one of the seven largest Baltic rivers, whose waters flow through a large and complex estuarine system before entering the bay. Nutrients (NO3 , NO2 , NH4 +, Ntot, PO4 3−, Ptot, DSi), chlorophylla concentrations, oxygen content, salinity, and temperature were measured in the Pomeranian Bay in nine seasonally distributed cruises during 1993–1997. Strong spatial and temporal patterns were observed and they were governed by: the seasonally variable riverine water-nutrient discharges, the seasonally variable uptake of nutrients and their cycling in the river estuary and the Bay, the character of water exchange between the Pomeranian Bay and the Szczecin Lagoon, and the water flow patterns in the Bay that are dominated by wind-driven circulation. Easterly winds resulted in water and nutrient transport along the German coastline, while westerly winds confined the nutrient rich riverine waters to the Polish coast and transported them eastward beyond the study area. Two water masses, coastal and open, characterized by different chemical and physical parameters and chla content were found in the Bay independently of the season. The role of the Oder estuary in nutrient transformation, as well as the role of temperature in transformation processes is stressed in the paper. The DIN:DIP:DSi ratio indicated that phosphorus most probably played a limiting role in phytoplankton production in the Bay in spring, while nitrogen did the same in summer. During the spring bloom, predominated by diatoms, the DSi:DIN ratio dropped to 0.1 in the coastal waters and to 0.6 in the open bay waters, pointing to silicon limitation of diatom growth, similar to what is being observed in other Baltic regions.  相似文献   

5.
The purpose of this field study was to determine the relationship between environmental conditions, particularly high nitrate (NO 3 ), low salinity events, and both nitrogen (N) storage (NO 3 , ammonium [NH 4 + ], free amino acids [FAA], protein, and total N) and nitrate reductase (NR) activity in the macroalgaeEnteromorpha lingulata andGelidium pusillum in the lower Mobile Bay estuary (Alabama, USA). The environmental conditions at the collection site varied over the growing season with the most notable changes due to late winter and spring runoff entering the estuary (1–30 psu, 0.3–25.8 μM NO 3 , 0.9–12.5 μM NH 4 + , 3–28°C, 61–2,375 μmol PAR m−2 s−1). Principal component analysis reduced the six environmental variables measured to three principal components. Stepwise, multiple regression analysis was then used to examine the relationship between the principal components and the internal NO 3 , NH 4 + , and FAA pools and NR activity. The results indicate that changes in inorganic N availability and salinity rather than changes in irradiance determine patterns of N storage and NO 3 reduction. BothE. lingulata andG. pusillum are capable of taking up and storing NO 3 when it becomes available. Greater NO 3 availability produced larger NH 4 + and FAA pools along with higher rates of NR activity inE. lingulata, but notG. pusillum, suggesting thatE. lingulata is able to metabolize NO 3 more rapidly during high NO 3 , low salinity events. Differences in the susceptibility ofE. lingulata andG. pusillum to NH 4 + inhibition and salinity stress combined with their different growth strategies help to explain the seasonal trends in total N. Total N inE. lingulata ranged from 2.57% to 6.39% dw, while the slower growingG. pusillum showed no significant variation in total N content (3.8–4.1% dw). These results led to the conclusion thatE. lingulata responds more quickly thanG. pusillum to high NO 3 , low salinity events and that these events have a larger effect on the overall N content ofE. lingulata.  相似文献   

6.
Although phytoliths constitute part of the wetland suspended load, there are few studies focused on the quantification of them in the biogenic silica (BSi) pool. So, the aim of this paper is both to determine BSi content (diatoms and phytoliths) and its relationship with dissolved silica in surface waters, and the influence of soil and groundwater Si biogeochemistry in Los Padres wetland (Buenos Aires Province, Argentina). In the basin of the Los Padres wetland, dissolved silica (DSi) concentration is near 840 ± 232 μmol/L and 211.83 ± 275.92 μmol/L in groundwaters and surface waters, respectively. BSi represents an 5.6–22.1% of the total suspension material, and 8–34% of the total mineralogical components of the wetland bottom sediments. DSi and BSi vary seasonally, with highest BSi content (diatoms specifically) during the spring–summer in correlation to the lowest DSi concentration. DSi (660–917.5 μmol/L) and phytolith (3.35–5.84%) concentrations in the inflow stream are higher than in the wetland and its outflow stream (19.1–113 μmol/L; 0.45–3.2%, respectively), probably due to the high phytolith content in soils, the high silica concentration in the soil solution, and the groundwater inflow. Diatom content (5–16.8%) in the wetland and its outflow stream is higher than in the inflow stream (0.45–1.97%), controlling DSi in this system. The understanding of the groundwater–surface water interaction in an area is a significant element for determining the different components and the role that they play on the local biogeochemical cycle of Si.  相似文献   

7.
Physical and chemical characteristics of the Hooghly estuary during winter (December 1997–January 1998), summer (May 1998) and post-monsoon (November 1998) seasons have been studied. Salinity varied spatially and temporally and seasonally during ebb and flood tide conditions. Water temperature showed a difference of 10‡C in winter to summer. Temperature did not vary much vertically as it is a well-mixed estuary. Strong currents exceeding 100 cm S-1 were observed during peak ebb and flood tide conditions irrespective of the season. Longitudinal eddy diffusion coefficient (K x ) was estimated as 757m S-1 and 811m2 S-1 during summer and post-monsoon seasons, respectively. The vertical eddy diffusion coefficient (εv) was estimated as 0.0337 m2 S-1 during post-monsoon season. The salinity and current observations are compared with those obtained from models reported earlier. Values of pH, Dissolved Oxygen and Biological Oxygen Demand are within the threshold limits of the estuarine environment. Nutrients show seasonal variation in the estuarine environment. High values (160-2686 mg l-1) of total suspended matter were noticed both at surface and bottom in the study region showing the impact of fresh water and sediment transportation.  相似文献   

8.
Phytoplankton uptake rates of ammonium (NH4 +), nitrate (NO3 ), and urea were measured at various depths (light levels) in Hong Kong waters during the summer of 2008 using 15N tracer techniques in order to determine which form of nitrogen (N) supported algal growth. Four regions were sampled, two differentially impacted by Pearl River discharge, one impacted by Hong Kong sewage discharge, and a site beyond these influences. Spatial differences in nutrient concentrations, ratios, and phytoplankton biomass were large. Dissolved nutrient ratios suggested phosphorus (P) limitation throughout the region, largely driven by high N loading from the Pearl River in summer. NH4 + and urea made up generally ≥50% of the total N taken up and the f ratio averaged 0.26. Even at the river-impacted site where concentrations of NO3 were >20 μM N, NH4 + comprised >60% of the total N uptake. Inhibition experiments demonstrated that NO3 uptake rates were reduced by 40% when NH4 + was >5 μM N. The relationship between the total specific uptake rates of N (sum of all measured substrates, V, per hour) and the chlorophyll a-specific rates (micromolars of N per microgram of Chl a per hour) varied spatially with phytoplankton biomass. Highest uptake rates and biomass were observed in southern waters, suggesting that P limitation and other factors (i.e., flushing rate) controlled production inshore and that the unincorporated N (mainly NO3 ) was transported offshore. These results suggest that, at the beginning of summer, inshore algal blooms are fueled primarily by NH4 + and urea, rather than NO3 , from the Pearl River discharge. When NH4 + and urea are depleted, then NO3 is taken up and can increase the magnitude of the bloom.  相似文献   

9.
Sediment-water oxygen and nutrient (NH4 +, NO3 ?+NO2 ?, DON, PO4 3?, and DSi) fluxes were measured in three distinct regions of Chesapeake Bay at monthly intervals during 1 yr and for portions of several additional years. Examination of these data revealed strong spatial and temporal patterns. Most fluxes were greatest in the central bay (station MB), moderate in the high salinity lower bay (station SB) and reduced in the oligohaline upper bay (station NB). Sediment oxygen consumption (SOC) rates generally increased with increasing temperature until bottom water concentrations of dissolved oxygen (DO) fell below 2.5 mg l?1, apparently limiting SOC rates. Fluxes of NH4 + were elevated at temperatures >15°C and, when coupled with low bottom water DO concentrations (<5 mg l?1), very large releases (>500 μmol N m?2 h?1) were observed. Nitrate + nitrite (NO3 ?+NO2 ?) exchanges were directed into sediments in areas where bottom water NO3 ?+NO2 ? concentrations were high (>18 μM N); sediment efflux of NO3 ?+NO2 ? occurred only in areas where bottom water NO3 ?+NO2 ? concentrations were relatively low (<11 μM N) and bottom waters well oxygenated. Phosphate fluxes were small except in areas of hypoxic and anoxic bottom waters; in those cases releases were high (50–150 μmol P m?2 h?1) but of short duration (2 mo). Dissolved silicate (DSi) fluxes were directed out of the sediments at all stations and appeared to be proportional to primary production in overlying waters. Dissolved organic nitrogen (DON) was released from the sediments at stations NB and SB and taken up by the sediments at station MB in summer months; DON fluxes were either small or noninterpretable during cooler months of the year. It appears that the amount and quality of organic matter reaching the sediments is of primary importance in determining the spatial variability and interannual differences in sediment nutrient fluxes along the axis of the bay. Surficial sediment chlorophyll-a, used as an indicator of labile sediment organic matter, was highly correlated with NH4 ?, PO4 3?, and DSi fluxes but only after a temporal lag of about 1 mo was added between deposition events and sediment nutrient releases. Sediment O:N flux ratios indicated that substantial sediment nitrification-denitrification probably occurred at all sites during winter-spring but not summer-fall; N:P flux ratios were high in spring but much less than expected during summer, particularly at hypoxic and anoxic sites. Finally, a comparison of seasonal N and P demand by phytoplankton with sediment nutrient releases indicated that the sediments provide a substantial fraction of nutrients required by phytoplankton in summer, but not winter, especially in the mid bay region.  相似文献   

10.
The present study reports on perturbations of the water column by large rainfall at Lake Alchichica, a saline lake in Central Mexico. Alchichica is located in the “Llanos de San Juan,” a high-altitude plateau with a minimum elevation of 2,300 m above sea level. The climate is arid with annual precipitation less than 400 mm and annual evaporation of 500–600 mm. A single day large rainfall event delivered 1,810,000 m3 of water to the basin, raising the lake’s water level by about 1 m. Temperature and salinity profiles showed an atypical temperature inversion up to 1°C in the upper layer accompanied by salinity decrease up to 0.5 g l−1. Transparency and pH were slightly altered, but dissolved oxygen, nutrients and chlorophyll a concentrations were not changed. In spite of the heavy rainfall and associated wind, the effects of the event were limited to the upper half of the epilimnion. After 2 days, the lake water level returned to its original level. The rapid leakage of the runoff minimized any long-term effects of the large rainfall.  相似文献   

11.
We use daily satellite estimates of sea surface temperature (SST) and rainfall during 1998–2005 to show that onset of convection over the central Bay of Bengal (88–92°E, 14–18°N) during the core summer monsoon (mid-May to September) is linked to the meridional gradient of SST in the bay. The SST gradient was computed between two boxes in the northern (88–92°E, 18–22°N) and southern (82–88°E, 4–8°N) bay; the latter is the area of the cold tongue in the bay linked to the Summer Monsoon Current. Convection over central bay followed the SST difference between the northern and southern bay (ΔT) exceeding 0.75°C in 28 cases. There was no instance of ΔT exceeding this threshold without a burst in convection. There were, however, five instances of convection occurring without this SST gradient. Long rainfall events (events lasting more than a week) were associated with an SST event (ΔT ≥ 0.75°C); rainfall events tended to be short when not associated with an SST event. The SST gradient was important for the onset of convection, but not for its persistence: convection often persisted for several days even after the SST gradient weakened. The lag between ΔT exceeding 0.75°C and the onset of convection was 0–18 days, but the lag histogram peaked at one week. In 75% of the 28 cases, convection occurred within a week of ΔT exceeding the threshold of 0.75°C. The northern bay SST, T N , contributed more to ΔT, but it was a weaker criterion for convection than the SST gradient. A sensitivity analysis showed that the corresponding threshold for T N was 29°C. We hypothesise that the excess heating (∼1°C above the threshold for deep convection) required in the northern bay to trigger convection is because this excess in SST is what is required to establish the critical SST gradient.  相似文献   

12.
Sediments with high sedimentation rate at site MD05-2905 in the Northeastern slope of the South China Sea provide unique materials for a high-resolution study on the paleoenvironment. Based on precise dating of AMS 14C, grain size analysis of terrigenous debris at core MD05-2905 was conducted after organic matter, biological carbonate and biogenic opal were removed. The results show that 15.5–63.5 μm coarse grain size ingredients may indicate East Asian winter monsoon changes and that 2–9 μm fine grain size ingredients may be used as a proxy of evolution of the East Asian summer monsoon. The results of grain size analysis, which suggest East Asian monsoon intensity, reveal that a winter monsoon dominated the glacial regime and a summer monsoon dominated the Holocene regime. It was also shown that the summer monsoon increased gradually, experienced several abrupt changes and reached a culmination in the early Holocene (11200–8500 a B.P.) since 36 ka. Controlled by precession periodicity, it may be related with the amount of solar radiation at the highest stage, which needs further study. __________ Translated from Advances in Earth Science, 2007, 22(10): 1012–1018 [译自: 地球科学进展]  相似文献   

13.
The Skidaway River estuary is a tidally-dominated subtropical estuary in the southeastern USA surrounded by extensiveSpartina salt marshes. Weekly smapling at high and low tide began in 1986 for hydrography, nutrients, chlorophylla, particulate matter, and microbial and plankton biomass and composition; hydrographic and nutrient data during 1986–1996 are reported here. Salinity varied inversely with river discharge and exhibited variability at all time scales but with no long-term trend. Water temperature typically ranged over 25°C and was without apparent long-term frend. Seasonal cycles in concentrations of NO3, NH4, PO4, Si(OH)4, and DON were observed, with annual maxima generally occurring in late summer. Superimposed on seasonal cycles, all five nutrients exhibited steady increases in minimum, mean, and maximum concentrations; mean concentrations increased c. 50–150% during the decade. Nutrient concentrations were highly correlated with water temperature over the ten-year period, but weakly related to salinity and discharge. Nutrients were strongly correlated with one another, and the relative ratios among inorganic nutrients showed little long-term trend. Correlations among temperature and nutrient concentrations exhibited considerable inter-annual variability. Major spikes in organic and inorganic nutrient concentrations coincided with significant rainfall events; concentrations increased hyperbolically with rainfall. Although pristine compared to more heavily impacted waterways primarily outside the region, residential development and population density have been increasing rapidly during the past 15–20 years. Land use is apparently altering nutrient loading over the long-term (months-years), and superimposed on this are stochastic meteorological events that accelerate these changes over the short term (days-weeks).  相似文献   

14.
The seasonal pattern of phytoplankton biomass (chlorophyll and particulate organic carbon) and the salinity-related pattern of phytoplankton biomass and size composition were determined in Apalachicola Bay, Florida, throughout 2004. Phytoplankton biomass was highest during summer and lowest during winter. During summer, phytoplankton biomass was highest in waters with salinity between about 5 and 23. In waters between 5 and 23, phytoplankton biomass was primarily (> 50%) composed of < 5 μm cells. The results from this study support the idea that a microbial food web characterizes mass and energy flow through the planktonic food web in Apalachicola Bay and other estuaries. During winter, the carbonxhlorophylla ratio averaged 56 ± 60 (standard deviation). During summer, the ratio ranged from 23 to 345, with highest values occurring in waters with salinity between about 8 and 22. The carbonxhlorophylla ratio was positively related to the percent of chlorophyll < 5 μm in size during summer.  相似文献   

15.
Phytoplankton nutrient limitation experiments were performed from 1994 to 1996 at three stations in the Cape Fear River Estuary, a riverine system originating in the North Carolina piedmont. Nutrient addition bioassays were conducted by spiking triplicate cubitainers with various nutrient combinations and determining algal response by analyzing chlorophyll a production and 14C uptake daily for 3 d. Ambient chlorophyll a, nutrient concentration, and associated physical data were collected throughout the estuary as well. At a turbid, nutrient-rich oligohaline station, significant responses to nutrient additions were rare, with light the likely principal factor limiting phytoplankton production. During summer at a mesohaline station, phytoplankton community displayed significant nitrogen (N) limitation, while both phosphorus (P) and N were occasionally limiting in spring with some N+P co-limitation. Light was apparently limiting during fall and winter when the water was turid and nutrient-rich, as well as during other months of heavy rainfall and runoff. A polyhaline station in the lower estuary had clearer water and displayed significant responses to nutrient additions during all enrichment experiments. At this site N limitation occurred in summer and fall, and P limitation (with strong N+P co-limitation) occurred in winter and spring. The data suggest there are two patterns controlling phytoplankton productivity in the Cape Fear system: 1) a longitudinal pattern of decreasing light limitation and increasing nutrient sensitivity along the salinity gradient, and 2) a seasonal alternation of N limitation, light limitation, and P limitation in the middle-to-lower estuary. Statistical analyses indicated upper watershed precipitation events led to increased flow, turbidity, light attenuation, and nutrient loading, and decreased chlorophyll a and nutrient limitation potential in the estuary. Periods of low rainfall and river flow led to reduced estuarine turbidity, higher chlorophyll a, lower ambient nutrients, and more pronounced nutrient limitation.  相似文献   

16.
Temporal and spatial variations in phytoplankton in Asan Bay, a temperate estuary under the influence of monsoon, were investigated over an annual cycle (2004). Phytoplankton blooms started in February (>20 μg chl l−1) and continued until April (>13 μg chl l−1) during the dry season, especially in upstream regions. The percentage contribution of large phytoplankton (micro-sized) was high (78–95%) during the blooms, and diatoms such as Skeletonema costatum and Thalassiosira spp. were dominant. The precipitation and freshwater discharge from embankments peaked and supplied nutrients into the bay during the monsoon event, especially in July. Species that favor freshwater, such as Oscillatoria spp. (cyanobacteria), dominated during the monsoon period. The phytoplankton biomass was minimal in this season despite nutrient concentrations that were relatively sufficient (enriched), and this pattern differed from that in tropical estuaries affected by monsoon and in temperate estuaries where phytoplankton respond to nutrient inputs during wet seasons. The flushing time estimated from the salinity was shorter than the doubling time in Asan Bay, which suggests that exports of phytoplankton maximized by high discharge directly from embankments differentiate this bay from other estuaries in temperate and tropical regions. This implies that the change in physical properties, especially in the freshwater discharge rates, has mainly been a regulator of phytoplankton dynamics since the construction of embankments in Asan Bay.  相似文献   

17.
Temporal variation in rainfall created a germination window for seedling establishment in the upper intertidal marshes of southern California. In this highly variable climate, total annual rainfall was highly variable, as was the timing and size of rainfall during the wet season. Daily rainfalls>3.0 cm were rare in the long-term record but created germination opportunities that had two components: low salinity and high moisture. During the 1996–1997 wet season, only one-day rainfalls>3.0 cm resulted in large increases in soil moisture and decreases in soil salinity. Germination in the upper intertidal marsh of three wetlands followed two large (>3.0 cm) rainfall events in the relatively dry 1996–1997 season and multiple medium and small rainfall events in the wetter 1997–1998 season. In addition to rainfall, plant cover and soil texture influenced, spatial and temporal variation in soil salinity and moisture. Daily and weekly sampling adequately described soil moisture and salinity so that germination could be predicted; monthly sampling would have missed the low-salinity and high-moisture events that trigger germination.  相似文献   

18.
Arsenic mobility in fluvial environment of the Ganga Plain,northern India   总被引:1,自引:1,他引:0  
In the northern part of the Indian sub-continent, the Gomati River (a tributary of the Ganga River) was selected to study the dynamics of Arsenic (As) mobilization in fluvial environment of the Ganga Plain. It is a 900-km-long, groundwater-fed, low-gradient, alluvial river characterized by monsoon-controlled peaked discharge. Thirty-six water samples were collected from the river and its tributaries at low discharge during winter and summer seasons and were analysed by ICP-MS. Dissolved As and Fe concentrations were found in the range of 1.29–9.62 and 47.84–431.92 μg/L, respectively. Arsenic concentration in the Gomati River water has been detected higher than in its tributaries water and characteristically increases in downstream, attributed to the downstream increasing of Fe2O3 content, sedimentary organic carbon and silt-clay content in the river sediments. Significant correlation of determination (r 2 = 0.68) was also observed between As and Fe concentrations in the river water. Arsenic concentrations in the river water are likely to follow the seasonal temperature variation and reach the level of World Health Organization’s permissible limit (10 μg/L) for drinking water in summer season. The Gomati River longitudinally develops reducing conditions after the monsoon season that mobilize As into the river water. First, dissolved As enters into pore-water of the river bed sediments by the reductive dissolution of Fe-oxides/hydroxides due to microbial degradation of sedimentary organic matter. Thereafter, it moves upward as well as down slope into the river water column. Anthropogenically induced biogeochemical processes and tropical climatic condition have been considered the responsible factors that favour the release of As in the fluvial environment of the Ganga Plain. The present study can be considered as an environmental alarm for future as groundwater resources of the Ganga–Brahmaputra Delta are seriously affecting the human–environment relationship at present.  相似文献   

19.
A long-term study (monthly sampling, 1992 to 2007) was conducted in the surf zone of Cassino Beach, Southern Brazil, in order to detect possible natural and/or anthropogenic disturbances. Surface water temperature (6–29°C) was the only parameter with predictable seasonal variation; salinity (14–38) was inversely related to rainfall (3.1–485.2 mm month−1) and low values followed extreme precipitation periods in 1997/1998 and 2002/2003 (El Ni?o years). Asterionellopsis glacialis and chlorophyll a presented high concentrations and peak frequency until 1998, when an intense mud deposition occurred with concomitant extreme rainfall. It affected the surf zone and beach, changing the hydrology and dissolved inorganic nutrient availability. Six phytoplankton species groups were recognized with distinct responses to this mud deposition. We conclude that large-scale climatic changes, like El Ni?o Southern Oscillation, in conjunction with human activities significantly altered the phytoplankton ecology of the highly dynamic Cassino Beach surf zone.  相似文献   

20.
 The relationship between Total Dissolved Ions (TDI) and conductivity is established in around 34000 samples collected from rivers, streams and dams in Queensland since the 1960s. These data are extremely variable in content, reliability and periodicity of sampling. The data were sorted into useable modules, and their statistical distribution was examined. The median ratios of TDI/Conductivity obtained for different salinity ranges were between 0.59 and 0.72, with normal variability ranging from below 0.35 to greater than 1.00, particularly at lower salinities. The data set used has sufficient sample numbers and areal distribution per increment to give reasonable reliability within the conductivity range of 50–1000 μScm–1. A table has been developed that enables selection of conversion factors from conductivity to salinity (as TDI) which could be used to predict TDI from future conductivity measurements from the same surface water population. Received: 30 October 1998 · Accepted: 17 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号