首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediment from two deep boreholes (∼400 m) approximately 90 km apart in southern Bangladesh was analyzed by X-ray absorption spectroscopy (XAS), total chemical analyses, chemical extractions, and electron probe microanalysis to establish the importance of authigenic pyrite as a sink for arsenic in the Bengal Basin. Authigenic framboidal and massive pyrite (median values 1500 and 3200 ppm As, respectively), is the principal arsenic residence in sediment from both boreholes. Although pyrite is dominant, ferric oxyhydroxides and secondary iron phases contain a large fraction of the sediment-bound arsenic between approximately 20 and 100 m, which is the depth range of wells containing the greatest amount of dissolved arsenic. The lack of pyrite in this interval is attributed to rapid sediment deposition and a low sulfur flux from riverine and atmospheric sources. The ability of deeper aquifers (>150 m) to produce ground water with low dissolved arsenic in southern Bangladesh reflects adequate sulfur supplies and sufficient time to redistribute the arsenic into pyrite during diagenesis.  相似文献   

2.
Here new data from field bioremediation experiments and geochemical modeling are reported to illustrate the principal geochemical behavior of As in anaerobic groundwaters. In the field bioremediation experiments, groundwater in Holocene alluvial aquifers in Bangladesh was amended with labile water-soluble organic C (molasses) and MgSO4 to stimulate metabolism of indigenous SO4-reducing bacteria (SRB). In the USA, the groundwater was contaminated by Zn, Cd and SO4, and contained <10 μg/L As under oxidized conditions, and a mixture of sucrose and methanol were injected to stimulate SRB metabolism. In Bangladesh, groundwater was under moderately reducing conditions and contained ∼10 mg/L Fe and ∼100 μg/L As. In the USA experiment, groundwater rapidly became anaerobic, and dissolved Fe and As increased dramatically (As > 1000 μg/L) under geochemical conditions consistent with bacterial Fe-reducing conditions. With time, groundwater became more reducing and biogenic SO4 reduction began, and Cd and Zn were virtually completely removed due to precipitation of sphalerite (ZnS) and other metal sulfide mineral(s). Following precipitation of chalcophile elements Zn and Cd, the concentrations of Fe and As both began to decrease in groundwater, presumably due to formation of As-bearing FeS/FeS2. By the end of the six-month experiment, dissolved As had returned to below background levels. In the initial Bangladesh experiment, As decreased to virtually zero once biogenic SO4 reduction commenced but increased to pre-experiment level once SO4 reduction ended. In the ongoing experiment, both SO4 and Fe(II) were amended to groundwater to evaluate if FeS/FeS2 formation causes longer-lived As removal. Because As-bearing pyrite is the common product of SRB metabolism in Holocene alluvial aquifers in both the USA and Southeast Asia, it was endeavored to derive thermodynamic data for arsenian pyrite to better predict geochemical processes in naturally reducing groundwaters. Including the new data for arsenian pyrite into Geochemist’s Workbench, its stability field completely dominates in reducing Eh–pH space and “displaces” other As-sulfides (orpiment, realgar) that have been implied to be important in previous modeling exercises and reported in rare field conditions.  相似文献   

3.
The aim of this work is to evaluate the changes in groundwater chemistry in an alluvial aquifer in the Moa area. Surface and ground water, metallurgical waste and various geological material samples were collected in order to evaluate groundwater composition. The results show that the alluvial aquifer is polluted with SO42-, Mg2+and heavy metals. According to its major components in the alluvial aquifer, two types of groundwater are identified: magnesi-bicarbonated and sulphate-magnesic. Maximum SO42– and Mg2+ contents are more than 1000 mg/L, and are four times higher than the acceptable levels for human consumption of water. The high values of Cr(VI), Ni(II), Mn(II) Fe(total), SO42– and Mg2+ in alluvial aquifers are due to polluted recharge from metallurgical waste from the tailing dam. This recharge is favoured by the preferential flow due to desiccation cracks in metallurgical waste. Geochemical modelling showed that potentially toxic heavy metals might exist largely in the forms of MSO42– and M2+ in pore water of SAL metallurgical waste. All samples were supersaturated in goethite and hematite. Results from batch testing indicate that the heavy metals have two origins: natural, due to the existing ultramaphic rocks and laterites, and anthropogenic, by metallurgical waste rich in sulphate and (oxy)hydroxide minerals. These results highlight the need to locate and evaluate a new water source to supply the population of the city of Moa.  相似文献   

4.
Sulfide minerals commonly occur in sediments and basement rocks in southern New Zealand, as authigenic precipitates from groundwater below the oxygenated surface zone. There are two principal potential sources for sulfur in the groundwater system: weathering of sulfide minerals in the metamorphic basement and rainwater-derived marine aerosols. We present data for these two key sulfur sources: metamorphic sulfide and associated hydrothermal Au-bearing veins within the Otago Schist (average δ34S = −1.8 ± 2.4‰), and an inland saline lake (S derived entirely from rainwater, δ34S = 21.4 ± 0.8‰). We use these two end member δ34S values to estimate the contributions of these sources of sulfur in authigenic groundwater sulfide minerals and in waters derived from oxidation of these sulfide minerals, across a range of environments. We show that authigenic groundwater pyrite along joints in the Otago schist is derived primarily from metamorphic basement sulfur. In contrast, authigenic groundwater pyrite cementing Miocene-Recent aquifers shows a substantial marine aerosol component, and represents a distinct hydrogeological system. We suggest that marine aerosols represent a significant flux to the terrestrial sulfur cycle that has been present through the groundwater system in Otago over the past 20 million years.  相似文献   

5.
Pollution of groundwater in the Bengal Basin (Bangladesh and West Bengal, India) by arsenic (As) puts at risk the health of more than 100 million consumers. Using 1,580 borehole lithological logs and published hydrochemistry on 2,387 wells, it was predicted that low-As (<10 μg/L) groundwater exists, in palaeo-interfluvial aquifers of brown sand capped by a protective palaeosol, beneath at least 45,000 km2 of the Bengal Basin. The aquifers were predicted to be at a depth of as little as 25 m below ground level (mbgl), and typically no more than 50 mbgl. The predictions were confirmed along an east–west traverse 115 km in length (i.e. across half of Bangladesh) by drilling 28 new boreholes to 91-m depth to reveal subsurface sedimentology, and by mapping As distribution in groundwater. The aquifers identified occur at typically <40 mbgl and so are accessible with local drilling methods. A protective palaeosol that caps the palaeo-interfluvial aquifers prevents downward movement into them of As-polluted groundwater present in shallower palaeo-channel aquifers and ensures that the palaeo-interfluvial aquifers will yield low-As groundwater for the foreseeable future. Their use, in place of the shallower As-polluted palaeo-channel aquifers, would rapidly mitigate the health risks from consumption of As-polluted groundwater.  相似文献   

6.
《Applied Geochemistry》2003,18(9):1453-1477
Observed As concentrations in groundwater from boreholes and wells in the Huhhot Basin of Inner Mongolia, northern China, range between <1 μg l−1 and 1480 μg l−1. The aquifers are composed of Quaternary (largely Holocene) lacustrine and fluvial sediments. High concentrations are found in groundwater from both shallow and deep boreholes as well as from some dug wells (well depths ranging between <10 m and 400 m). Populations from the affected areas experience a number of As-related health problems, the most notable of which are skin lesions (keratosis, melanosis, skin cancer) but with internal cancers (lung and bladder cancer) also having been reported. In both the shallow and deep aquifers, groundwaters evolve down the flow gradient from oxidising conditions along the basin margins to reducing conditions in the low-lying central part of the basin. High As concentrations occur in anaerobic groundwaters from this low-lying area and are associated with moderately high dissolved Fe as well as high Mn, NH4, dissolved organic C (DOC), HCO3 and P concentrations. Many of the deep groundwaters have particularly enriched DOC concentrations (up to 30 mg l−1) and are often brown as a result of the high concentrations of organic acid. In the reducing groundwaters, inorganic As(III) constitutes typically more than 60% of the total dissolved As. The highest As concentrations tend to be found in groundwater with low SO4 concentrations and indicate that As mobilisation occurs under strongly reducing conditions, where SO4 reduction has been an active process. High concentrations of Fe, Mn, NH4, HCO3 and P are a common feature of reducing high-As groundwater provinces (e.g. Bangladesh, West Bengal). High concentrations of organic acid (humic, fulvic acid) are not a universal feature of such aquifers, but have been found in groundwaters from Taiwan and Hungary for example. The observed range of total As concentrations in sediments is 3–29 mg kg−1 (n=12) and the concentrations correlate positively with total Fe. Up to 30% of the As is oxalate-extractable and taken to be associated largely with Fe oxides. The release of As into solution under the reducing conditions is believed to be by desorption coupled with reductive dissolution of the Fe oxide minerals. The association of dissolved As with constituents such as HCO3, DOC and P may be a coincidence related to the prevalent reducing conditions and slow groundwater flow, but they may also be directly involved because of their competition with As for binding sites on the Fe oxides. The Huhhot groundwaters also have some high concentrations of dissolved U (up to 53 μg l−1) and F (up to 6.8 mg l−1). In contrast to As, U occurs predominantly under the more oxidising conditions along the basin margins. Fluoride occurs dominantly in the shallow groundwaters which have Na and HCO3 as the dominant ions. The combination of slow flow of groundwater and the young age of the aquifer sediments are also considered potentially important causes of the high dissolved As concentrations observed as the sediments are likely to contain newly-formed and reactive minerals and have not been well flushed since burial.  相似文献   

7.
The Wilcox aquifer is a major groundwater resource in the northern Gulf Coastal Plain (lower Mississippi Valley) of the USA, yet the processes controlling water chemistry in this clastic aquifer have received relatively little attention. The current study combines analyses of solutes and stable isotopes in groundwater, petrography of core samples, and geochemical modeling to identify plausible reactions along a regional flow path ~300 km long. The hydrochemical facies evolves from Ca-HCO3 upgradient to Na-HCO3 downgradient, with a sequential zonation of terminal electron-accepting processes from Fe(III) reduction through SO4 2? reduction to methanogenesis. In particular, decreasing SO4 2? and increasing δ34S of SO4 2? along the flow path, as well as observations of authigenic pyrite in core samples, provide evidence of SO4 2? reduction. Values of δ13C in groundwater suggest that dissolved inorganic carbon is contributed both by oxidation of sedimentary organic matter and calcite dissolution. Inverse modeling identified multiple plausible sets of reactions between sampled wells, which typically involved cation exchange, pyrite precipitation, CH2O oxidation, and dissolution of amorphous Fe(OH)3, calcite, or siderite. These reactions are consistent with processes identified in previous studies of Atlantic Coastal Plain aquifers. Contrasts in groundwater chemistry between the Wilcox and the underlying McNairy and overlying Claiborne aquifers indicate that confining units are relatively effective in limiting cross-formational flow, but localized cross-formational mixing could occur via fault zones. Consequently, increased pumping in the vicinity of fault zones could facilitate upward movement of saline water into the Wilcox.  相似文献   

8.
Tailings generated during processing of sulfide ores represent a substantial risk to water resources. The oxidation of sulfide minerals within tailings deposits can generate low-quality water containing elevated concentrations of SO4, Fe, and associated metal(loid)s. Acid generated during the oxidation of pyrite [FeS2], pyrrhotite [Fe(1−x)S] and other sulfide minerals is neutralized to varying degrees by the dissolution of carbonate, (oxy)hydroxide, and silicate minerals. The extent of acid neutralization and, therefore, pore-water pH is a principal control on the mobility of sulfide-oxidation products within tailings deposits. Metals including Fe(III), Cu, Zn, and Ni often occur at high concentrations and exhibit greater mobility at low pH characteristic of acid mine drainage (AMD). In contrast, (hydr)oxyanion-forming elements including As, Sb, Se, and Mo commonly exhibit greater mobility at circumneutral pH associated with neutral mine drainage (NMD). These differences in mobility largely result from the pH-dependence of mineral precipitation–dissolution and sorption–desorption reactions. Cemented layers of secondary (oxy)hydroxide and (hydroxy)sulfate minerals, referred to as hardpans, may promote attenuation of sulfide-mineral oxidation products within and below the oxidation zone. Hardpans may also limit oxygen ingress and pore-water migration within sulfide tailings deposits. Reduction–oxidation (redox) processes are another important control on metal(loid) mobility within sulfide tailings deposits. Reductive dissolution or transformation of secondary (oxy)hydroxide phases can enhance Fe, Mn, and As mobility within sulfide tailings. Production of H2S via microbial sulfate reduction may promote attenuation of sulfide-oxidation products, including Fe, Zn, Ni, and Tl, via metal-sulfide precipitation. Understanding the dynamics of these interrelated geochemical and mineralogical processes is critical for anticipating and managing water quality associated with sulfide mine tailings.  相似文献   

9.
The shallow alluvial aquifers of the delta plains and flood plains of Bangladesh, comprises about 70% of total land area are mostly affected by elevated concentrations of arsenic (As) in groundwater exposing a population of more than 35 million to As toxicity. Geochemical studies of shallow alluvial aquifer in the Meghna flood plain show that the uppermost yellowish grey sediment is low in As (1.03 mg/kg) compared to the lower dark grey to black sediment (5.24 mg/kg) rich in mica and organic matter. Sequential extraction data show that solid phase As bound to poorly crystalline and amorphous metal (Fe, Mn, Al)-oxyhydroxides is dominant in the grey to dark grey sediment and reaches its maximum level (3.05 mg/kg) in the mica rich layers. Amount of As bound to sulphides and organic matter also peaks in the dark grey to black sediment. Vertical distributions of major elements determined by X-ray fluorescence (XRF) show that iron (Fe2O3), aluminum (Al2O3) and manganese (MnO) follow the general trend of distribution of As in the sediments. Concentrations of As, Mn, Fe, HCO3 , SO4 2− and NO3 in groundwater reflect the redox status of the aquifer and are consistent with solid phase geochemistry. Mineralogical analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) fitted with energy dispersive X-ray spectrometer (EDS) revealed dominance of crystalline iron oxides and hydroxides like magnetite, hematite and goethite in the oxidised yellowish grey sediment. Amorphous Fe-oxyhydroxides identified as grain coating in the mica and organic matter rich sediment suggests weathering of biotite is playing a critical role as the source of Fe(III)-oxyhydroxides which in turn act as sink for As. Presence of authigenic pyrite in the dark grey sediment indicates active reduction in the aquifer.  相似文献   

10.
《Applied Geochemistry》2004,19(2):215-230
Sources of As in the Ganges sediments and microbial mechanisms of its release in groundwater were examined in the present study, where the authors have systematically examined the pertinent mineral species present in the sediments using XRD, TEM-EDS and EPMA techniques. The results show several As-bearing minerals in the Ganges sediments, in western Bangladesh. Iron-sulfide minerals consist of near-amorphous and/or crystalline precursors of framboidal pyrite and pyrite both of which contain As. Several types of Fe oxyhydroxides (oxides), which contain variable amounts of As were also found in muddy sediments. The content of As increases from Fe-oxides to the precursors of framboidal pyrite and pyrite. Four different chemical forms of As from the core sediments were determined. The sequentially extracted chemical forms are as follows: (1) acid soluble form (As mainly fixed in carbonates), (2) reducible form (As fixed in Fe- and/or Mn-oxides), (3) organic form, (4) insoluble form (As fixed mainly in sulfide and rarely in silicate minerals). Arsenic is dominantly sorbed on to Fe- and/or Mn-oxides, organic forms and sulfide minerals in most samples, although their relative abundances differ in different samples. Geomicrobial culture experiments were carried out to test the hypothesis that microbial processes play a key role in the release of As in groundwater. Batch culture and circulating water system experiments were designed using the sediments from Bangladesh. In the batch experiments, As was released at low Eh values a few days after adding nutrients containing glucose, polypepton and yeast extract, urea and fertilizer under a dominantly N2 atmosphere. This contrasts with the control experiments without nutrients. Circulating water experiments with sand layer in a N2 atmosphere showed similar results. These results support the hypothesis that microbial processes mediate the release of As into groundwater under reducing conditions. Glucose and polypepton used in the experiments may correspond to C and N sources, respectively. Younger sediments contain abundant organic matter, which is easily used by bacteria. So, the enhanced bacterial activity may correspond to simulation of accelerated natural diagenetic process using organic matter, or some fertilizer/wastewater effects.  相似文献   

11.
《Applied Geochemistry》1994,9(2):161-173
Possible groundwater quality changes related to pyrite oxidation during artificial groundwater recharge and its storage in the Tertiary sands of the London Basin are investigated. Pyrite textures in the Tertiary sands are examined by scanning electron microscopy while an experimental approach is used to study mechanisms of pyrite oxidation and of some associated chemical reactions. In the Tertiary sands of the London Basin aquifer, pyrite occurs as aggregates made of discrete individual crystals 0.5–5 μm in size or, in a cryptocrystalline form, often as pseudomorphs of biogenic debris. It can expose a very large specific surface area to porefluids. Although ferric iron, which can be an oxidising agent of pyrite, is abundant in the solid phase of the Tertiary sands, it does not appear to take a significant part in this case. Pyrite oxidation seems to rely on a supply of oxygen. Leaching experiments using a 0.001 M H2SO4 solution were carried out to examine interactions between mildly acidic groundwater resulting from pyrite oxidation at a moderate rate and the host-sediment. In the presence of CaCO3 in the solid phase, H+ is rapidly buffered by CaCO3 dissolution. Oscillations of this reaction around equilibrium appear to trigger cation-exchange reactions on clay mineral surfaces, resulting in the release of major cations (e.g. K and Mg) into solution. In the absence of CaCO3 in the solid phase, H+ buffering occurs less efficiently solely through exchange of cations for H+ on clay minerals surfaces. If the rate of pyrite oxidation in the Tertiary sands becomes high enough for the buffering capacity of the system to be exceeded, the groundwater pH begins to fall. Interactions between low pH (2) groundwaters and the host sediments were examined by leaching solid material in 0.01 M and 0.1 M H2SO4 solutions. Concentrations of Fe, Mg and K increase in solution throughout the experiment, indicating partial dissolution of clay minerals. The composition of the porefluid thus depends on the geochemical composition and surface area of the different clay minerals present.  相似文献   

12.
Iron and Mn concentrations in fresh groundwaters of alluvial aquifers are generally high in reducing conditions reflecting low SO4 concentrations. The mass balance and isotopic approaches of this study demonstrate that reduction of SO4, supplied from agricultural activities such as fertilization and irrigation, is important in lowering Fe and Mn levels in alluvial groundwaters underneath a paddy field. This study was performed to investigate the processes regulating Fe and Mn levels in groundwaters of a point bar area, which has been intensively used for flood cultivation. Four multilevel-groundwater samplers were installed to examine the relationship between geology and the vertical changes in water chemistry. The results show that Fe and Mn levels are regulated by the presence of NO3 at shallow depths and by SO4 reduction at the greater depths. Isotopic and mass balance analyses revealed that NO3 and SO4 in groundwater are mostly supplied from the paddy field, suggesting that the Fe-and Mn-rich zone of the study area is confined by the agricultural activities. For this reason, the geologic conditions controlling the infiltration of agrochemicals are also important for the occurrence of Fe/Mn-rich groundwaters in the paddy field area.  相似文献   

13.
Interplay of S and As in Mekong Delta sediments during redox oscillations   总被引:1,自引:1,他引:0  
The cumulative effects of periodic redox cycling on the mobility of As,Fe,and S from alluvial sediment to groundwater were investigated in bioreactor experiments.Two particular sediments from the alluvial floodplain of the Mekong Delta River were investigated:Matrix A(14 m deep)had a higher pyrite concentration than matrix B(7 m deep)sediments.Gypsum was present in matrix B but absent in matrix A.In the reactors,the sediment suspensions were supplemented with As(Ⅲ)and SO_4~(2-),and were subjected to three full-redox cycles entailing phases of nitrogen/CO_2,compressed air sparging,and cellobiose addition.Major differences in As concentration and speciation were observed upon redox cycling.Evidences support the fact that initial sediment composition is the main factor controlling arsenic release and its speciation during the redox cycles.Indeed,a high pyrite content associated with a low SO_4~(2-)content resulted in an increase in dissolved As concentrations,mainly in the form of As(Ⅲ),after anoxic half-cycles;whereas a decrease in As concentrations mainly in the form of As(Ⅴ),was instead observed after oxic half-cycles.In addition,oxic conditions were found to be responsible for pyrite and arsenian pyrite oxidation,increasing the As pool available for mobilization.The same processes seem to occur in sediment with the presence of gypsum,but,in this case,dissolved As were sequestered by biotic or abiotic redox reactions occurring in the Fe—S system,and by specific physico-chemical condition(e.g.pH).The contrasting results obtained for two sediments sampled from the same core show that many complexes and entangled factors are at work,and further refinement is needed to explain the spatial and temporal variability of As release to groundwater of the Mekong River Delta(Vietnam).  相似文献   

14.
Microbial SO42− reduction limits accumulation of aqueous As in reducing aquifers where the sulfide that is produced forms minerals that sequester As. We examined the potential for As partitioning into As- and Fe-sulfide minerals in anaerobic, semi-continuous flow bioreactors inoculated with 0.5% (g mL−1) fine-grained alluvial aquifer sediment. A fluid residence time of three weeks was maintained over a ca. 300-d incubation period by replacing one-third of the aqueous phase volume of the reactors with fresh medium every seven days. The medium had a composition comparable to natural As-contaminated groundwater with slightly basic pH (7.3) and 7.5 μM aqueous As(V) and also contained 0.8 mM acetate to stimulate microbial activity. Medium was delivered to a reactor system with and without 10 mmol L−1 synthetic goethite (α-FeOOH). In both reactors, influent As(V) was almost completely reduced to As(III). Pure As-sulfide minerals did not form in the Fe-limited reactor. Realgar (As4S4) and As2S3(am) were undersaturated throughout the experiment. Orpiment (As2S3) was saturated while sulfide content was low (∼50 to 150 μM), but precipitation was likely limited by slow kinetics. Reaction-path modeling suggests that, even if these minerals had formed, the dissolved As content of the reactor would have remained at hazardous levels. Mackinawite (Fe1 + xS; x ? 0.07) formed readily in the Fe-bearing reactor and held dissolved sulfide at levels below saturation for orpiment and realgar. The mackinawite sequestered little As (<0.1 wt.%), however, and aqueous As accumulated to levels above the influent concentration as microbial Fe(III) reduction consumed goethite and mobilized adsorbed As. A relatively small amount of pyrite (FeS2) and greigite (Fe3S4) formed in the Fe-bearing reactor when we injected a polysulfide solution (Na2S4) to a final concentration of 0.5 mM after 216, 230, 279, and 286 days. The pyrite, and to a lesser extent the greigite, that formed did sequester As from solution, containing 0.84 and 0.23 wt.% As on average, respectively. Our results suggest that As precipitation during Fe-sulfide formation in nature occurs mainly in conjunction with pyrite formation. Our findings imply that the effectiveness of stimulating microbial SO42− reduction to remediate As contamination may be limited by the rate and extent of pyrite formation and the solubility of As-sulfides.  相似文献   

15.
16.
《Applied Geochemistry》2002,17(5):517-568
The range of As concentrations found in natural waters is large, ranging from less than 0.5 μg l−1 to more than 5000 μg l−1. Typical concentrations in freshwater are less than 10 μg l−1 and frequently less than 1 μg l−1. Rarely, much higher concentrations are found, particularly in groundwater. In such areas, more than 10% of wells may be ‘affected’ (defined as those exceeding 50 μg l−1) and in the worst cases, this figure may exceed 90%. Well-known high-As groundwater areas have been found in Argentina, Chile, Mexico, China and Hungary, and more recently in West Bengal (India), Bangladesh and Vietnam. The scale of the problem in terms of population exposed to high As concentrations is greatest in the Bengal Basin with more than 40 million people drinking water containing ‘excessive’ As. These large-scale ‘natural’ As groundwater problem areas tend to be found in two types of environment: firstly, inland or closed basins in arid or semi-arid areas, and secondly, strongly reducing aquifers often derived from alluvium. Both environments tend to contain geologically young sediments and to be in flat, low-lying areas where groundwater flow is sluggish. Historically, these are poorly flushed aquifers and any As released from the sediments following burial has been able to accumulate in the groundwater. Arsenic-rich groundwaters are also found in geothermal areas and, on a more localised scale, in areas of mining activity and where oxidation of sulphide minerals has occurred. The As content of the aquifer materials in major problem aquifers does not appear to be exceptionally high, being normally in the range 1–20 mg kg−1. There appear to be two distinct ‘triggers’ that can lead to the release of As on a large scale. The first is the development of high pH (>8.5) conditions in semi-arid or arid environments usually as a result of the combined effects of mineral weathering and high evaporation rates. This pH change leads either to the desorption of adsorbed As (especially As(V) species) and a range of other anion-forming elements (V, B, F, Mo, Se and U) from mineral oxides, especially Fe oxides, or it prevents them from being adsorbed. The second trigger is the development of strongly reducing conditions at near-neutral pH values, leading to the desorption of As from mineral oxides and to the reductive dissolution of Fe and Mn oxides, also leading to As release. Iron (II) and As(III) are relatively abundant in these groundwaters and SO4 concentrations are small (typically 1 mg l−1 or less). Large concentrations of phosphate, bicarbonate, silicate and possibly organic matter can enhance the desorption of As because of competition for adsorption sites. A characteristic feature of high groundwater As areas is the large degree of spatial variability in As concentrations in the groundwaters. This means that it may be difficult, or impossible, to predict reliably the likely concentration of As in a particular well from the results of neighbouring wells and means that there is little alternative but to analyse each well. Arsenic-affected aquifers are restricted to certain environments and appear to be the exception rather than the rule. In most aquifers, the majority of wells are likely to be unaffected, even when, for example, they contain high concentrations of dissolved Fe.  相似文献   

17.
《Applied Geochemistry》2004,19(6):863-886
Large scale redox processes were investigated in a river recharged aquifer in the Oderbruch polder alongside the river Oder in north-eastern Germany. Major hydraulic and hydrochemical processes were identified qualitatively. As a result of intensive drainage activities in the past 250 a, the groundwater level within the polder is situated below the river water level and a levee prevents flooding of the lowland. As a consequence, river water permanently infiltrates into the shallow confined aquifer. A sequence of redox reactions, driven by organic matter degradation, can be observed during infiltration of oxic river water into the groundwater. Up to 3 km from the river, reduction processes from O2 respiration to SO2−4 reduction dominate the groundwater chemistry. While reduction of Fe- and Mn(hydr)oxides is the source of the high amounts of dissolved Fe2+ and Mn2+, carbonate dissolution/precipitation reactions control the actual groundwater concentration of Mn2+. The first order rate constant for SO2−4 reduction was found to be −0.0169 a−1. Fe2+ is released into the groundwater at a rate of 0.0033 mmol l−1 a−1. The groundwater chemistry is strongly linked to the hydraulic conditions. Near the river, the groundwater is confined and recharged by bank-filtration only. In contrast, in the central polder the groundwater is unconfined and percolation of rainwater through the dried loam is possible because of texture changes such as shrinkage fissures. Geogenic pyrite present within the alluvial loam is oxidised and large amounts of SO2−4 are released into the groundwater.  相似文献   

18.
Datong Basin is one of the Cenozoic faulted basins in Northern China’s Shanxi province, where groundwater is the major source of water supply. The results of hydrochemical investigation show that along the groundwater flow path, from the margins to the lower-lying central parts of the basin, groundwater generally shows increases in concentrations of TDS, HCO3 ?, SO4 2?, Cl?, Na+ and Mg2+ (except for Ca2+ content). Along the basin margin, groundwater is dominantly of Ca–HCO3 type; however, in the central parts of the basin it becomes more saline with Na–HCO3-dominant or mixed-ion type. The medium-deep groundwater has chemical compositions similar to those of shallow groundwater, except for the local area affected by human activity. From the mountain front to the basin area, shallow groundwater concentrations of major ions increase and are commonly higher than those in medium-deep aquifers, due to intense evapotranspiration and anthropogenic contamination. Hydrolysis of aluminosilicate and silicate minerals, cation exchange and evaporation are prevailing geochemical processes occurring in the aquifers at Datong Basin. The isotopic compositions indicate that meteoric water is the main source of groundwater recharge. Evaporation is the major way of discharge of shallow groundwater. The groundwater in medium-deep aquifers may be related to regional recharges of rainwater by infiltrating along the mountain front faults, and of groundwater permeating laterally from bedrocks of the mountain range. However, in areas of groundwater depression cones, groundwater in the deep confined aquifers may be recharged by groundwater from the upper unconfined aquifer through aquitards.  相似文献   

19.
This study investigated the relationship between near-surface lithology and the spatial variability of As concentrations using sediment grain-size analysis and electromagnetic induction survey in the southeast Bangladesh. It has been observed that the aquifers overlain by finer sediments have higher concentrations of As in groundwater, whereas As concentrations are remarkably low in aquifers having permeable sandy materials or thinner silt/clay layer at the surface. The near-surface lithology acts as a controlling factor for spatial distributions of groundwater As within the very shallow depths (<15 m). Shallow alluvial aquifers can provide low-As drinking water in many areas of the country when tube wells are properly installed after investigation of the overlying near-surface sediment attributes and hydraulic properties.  相似文献   

20.
Evaluation of major ion chemistry and solute acquisition process controlling water chemical composition were studied by collecting a total of fifty-one groundwater samples in shallow (<25 m) and deep aquifer (>25 m) in the Varanasi area. Hydrochemical facies, Mg-HCO3 dominated in the largest part of shallow groundwater followed by Na-HCO3 and Ca-HCO3 whereas Ca-HCO3 is dominated in deep groundwater followed by Mg-HCO3 and Na-HCO3. High As concentration (>50 μg/l) is found in some of the villages situated in northeastern parts (i.e. adjacent to the concave part of the meandering Ganga river) of the Varanasi area. Arsenic contamination is confined mostly in tube wells (hand pump) within the Holocene newer alluvium deposits, whereas older alluvial aquifers are having arsenic free groundwater. Geochemical modeling using WATEQ4F enabled prediction of saturation state of minerals and indicated dissolution and precipitation reactions occurring in groundwater. Majority of shallow and deep groundwater samples of the study area are oversaturated with carbonate bearing minerals and under-saturated with respect to sulfur and amorphous silica bearing minerals. Sluggish hydraulic conductivity in shallow aquifer results in higher mineralization of groundwater than in deep aquifer. But the major processes in deep aquifer are leakage of shallow aquifer followed by dominant ion-exchange and weathering of silicate minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号