首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The chemical and physical treatment mechanisms by which crab shell removes metals from mine impacted water (MIW) were evaluated under anaerobic and biologically limited conditions in closed systems and kinetic tests. Raw (R-SC20) and deproteinized (DP-SC20) crab shell were tested and compared to limestone to quantify the contribution of chitin-associated minerals and proteins to alkalinity generation and metal precipitation. Single-metal closed systems (initial Mn and Fe = 0.18 mM and Al = 0.34 mM) containing 5 g/L of either R- or DP-SC20, yielded an increase in pH from 3 to 9.2-10.2, generation of 0.83-1.87 mM of alkalinity, and resulted in ?95% removal of metals within 72 h. In contrast, 5-125 g limestone/L only raised the pH to 7.8-8.3, produced lower alkalinity (0.56-0.63 mM), and resulted in less metal removal (?85%). In kinetic tests with 5 g-DP-SC20/L, removal of ?95% of the initial metal load was achieved after 0.5, 6, and 48 h for Al, Fe, and Mn, respectively. Geochemical calculations (PHREEQC) indicate that limestone-treated systems were close to equilibrium with calcite (CaCO3), whereas octacalcium phosphate (Ca4H(PO4)3) appears to be a controlling phase in systems treated with R- and DP-SC20. The probable mechanisms for Mn removal are the precipitation of rhodochrosite (MnCO3) and/or sorption. In the case of Al and Fe, geochemical calculations point to the precipitation of hydroxides; however, visual observations in Fe systems suggest the formation of green rust, a precursor of other, more stable phases like goethite or lepidocrocite. Several factors may account for the faster changes observed with R- and DP-SC20 compared to limestone: increased dissolution and degree of supersaturation, the presence of phosphates, the release of organic compounds, and a significantly larger surface area. These results are the first to verify and quantify the capacity of crab shell-associated minerals to treat MIW under biologically limited conditions.  相似文献   

2.
The removal of Cd, Cu, Ni and Zn from dilute mine water by using several geological materials including pure limestone, sand, carbonaceous limestone and brecciated limestone was performed on a laboratory scale. The results showed that to add geological materials in combination with sodium carbonate injection would notably enhance the efficiency of heavy metal removal to varying degrees. Pure limestone was found the best one among the four materials mentioned above for removing heavy metals from mine water. The removal efficiencies of pure limestone when it is ground as fine as 30–60 meshes are 58.6% for Cd, 100% for Cu, 47.8% for Ni, and 36.8% for Zn at 20°C. The optimum pH is about 8.9 to 9.1. The mechanism of higher effective removal, perhaps, is primarily due to co-precipitation under the control of calcite-related pH value. According to this research, Na2CO3 injection manners, including slug dosing and drip-wise, seemed to have little impact on the efficiency of heavy metal removal.  相似文献   

3.
4.
Fifty-two grab samples of bottom sediment in settling ponds were obtained at 17 surface coal mines in the eastern and midwestern U.S. A series of laboratory extraction procedures were designed to simulate a wide range of possible natural conditions. The three types of laboratory extraction procedures were (1) a low-pH buffered extract; (2) a series of low-pH, near-neutral-pH, and high-pH nonbuffered extracts; and (3) a DTPA extract. For the transition metals examined (Fe, Mn, Ni, Zn, Co, Cu, Cr, Fe, Al), higher percentages were extracted by the low-pH buffered extract than by the low-pH nonbuffered extract and the DTPA extract. Within the nonbuffered series, higher percentages of individual metals were extracted at lower pH levels. There was generally a consistent order of “extractability” for all the extracts performed. At the mines using a chemical treatment to neutralize acid mine drainage, Mn was the most mobile and Fe and Al the least mobile of the metals considered; at the mines not using a chemical treatment, Ni, Zn, and Co were among the most mobile and Fe, Al, and Cr the least mobile of the metals studied. Two stepwise regression procedures (maximum R2 improvement and backward elimination) were used to suggest a ranking of independent variables that influence extractable metals. Statistically significant independent variables differed for the various metals. In general, the total amount of metal present was most important in determining metal extractability in the buffered extract at the mines using chemical treatment, and variables related to the natural acidity or alkalinity of the sediment and element interrelationships were important in the other extracts. A detailed examination of regression equations for the buffered extract suggests that it is possible to predict extractable metals using simple regression models based on the total amount of metals present, metals interrelationships, and sediment acidity or alkalinity.  相似文献   

5.
A study was initiated to analyse metal flows from alum shale to the environment in an area in Öland, Sweden. The study was performed by elemental analysis and leaching experiments of alum shale together with analysis of groundwater and surface water samples.The metal concentrations in non-weathered alum shale were much higher than in weathered or burnt shale, especially for cadmium (Cd), nickel (Ni) and zinc (Zn), indicating a loss of metals during weathering or burning of the shale. The release of metals through weathering was clearly demonstrated by the leaching tests. A 36-week leaching period of non-weathered shale resulted in a drastic drop in pH and a significant increase in metal concentrations in the leachate. The metal concentrations in groundwater were inversely related to the pH. For surface waters, the concentrations of Cd, copper (Cu), Ni and Zn were generally increased compared to background values.In conclusion, metals are released through weathering or burning of alum shale, as well as from heaps of weathered or burnt shale. The release of metals is strongly related to low pH, especially for Cd, Ni and Zn.  相似文献   

6.
Reactive mixtures to be used in a permeable reactive barrier (PRB) for the treatment of low quality groundwater derived from a mine waste rock storage site were evaluated. Low pH drainage water from the site contained high concentrations of sulfate and dissolved metals, including Al, Co, Ni, and Zn. Column experiments were conducted to evaluate whether mixtures containing either peat moss (as an organic carbon source) or a mixture of peat moss and granular zero-valent iron (ZVI) filings, in addition to small amounts of lime and/or limestone, were suitable treatment materials for removing these metals from the water. The experimental results showed that the mixtures promote bacterially-mediated sulfate reduction and metal removal by precipitation of metal sulfides, metal carbonate/hydroxide precipitation, and adsorption under relatively high pH conditions (pH of 7–8). Both reactive mixtures removed influent dissolved metals to near or below the limit of detection in the effluent throughout the experiment; however, influent-level concentrations of the metals of interest gradually moved through the column containing peat alone, as the pH neutralizing ability in the mixture was consumed. In contrast, the column containing both peat and ZVI showed very little breakthrough of the influent metals, suggesting that the longevity of the mixture including ZVI will be much longer than the mixture containing peat alone. The results show that both reactive mixtures should be effective in a PRB installation as long as neutral pH conditions and microbial activity are maintained. The cost to performance ratio of the two reactive mixtures will be a key factor in determining which mixture is best suited for a particular site.  相似文献   

7.
Vertical flow bioreactors (VFBR) are often used as a component of passive treatment systems (PTS) to treat mine drainage. One of the primary purposes of VFBR is to remove trace metals from mine drainage and retain them in the organic substrate. Elevated ionic strength may impact the performance of VFBR and affect their ability to remove trace metals. A paired-comparison study was performed to determine how products of trace metal removal may change when ionic strength is elevated due to increased concentrations of common contributors to TDS, specifically sodium and sulfate. A sequential extraction procedure (SEP) and acid-volatile sulfide/simultaneously extracted metals analyses (AVS/SEM) were used to determine dominant Cd, Mn, Ni, Pb, and Zn removal products in bench-scale VFBR. Elevated ionic strength resulted in more Pb being retained in the substrates as an insoluble sulfide and less Mn being removed via adsorption to the substrates. An increase in ionic strength had a greater impact on adsorption when sulfate reduction was inhibited, with percentages of Mn and Zn removed via this mechanism decreasing by at least half. This finding could be particularly significant at the start of VFBR operation when adsorption is expected to be the primary removal mechanism.  相似文献   

8.
通过采集南宁市郊农田中玉米、蔬菜、水稻可食部分及其根系土150组,研究重金属元素在不同土壤-农作物系统中迁移特征及其影响因素,结果表明:根系土中Hg、Cd、Cr、Cu、Ni、Pb、Zn平均含量分别为0.116、0.202、56.76、22.12、14.49、25.18和56.28 mg·kg-1。农作物对应平均含量分别为0.001 1、0.037、0.054、1.153、0.205、0.011和9.37 mg·kg-1。根系土富集因子表明Cd受到不同程度人为活动影响,Cr和Ni主要受地质背景控制;不同作物系统元素富集因子表明Pb在土壤-农作物系统中迁移能力最低,Zn迁移能力最强。Cd、Cr、Cu、Ni、Pb和Zn在土壤-水稻系统重迁移能力显著高于蔬菜和玉米。根系土中pH、CaO、有机质、Fe2O3、K2O、MgO与重金生物富集系数呈显著性负相关,但在土壤-叶类蔬菜系统中根系土中K2O、MgO与Hg生物富集系数呈显著正相关。   相似文献   

9.
Passive treatment systems have become one of the most sustainable and feasible ways of remediating acid mine drainage (AMD). However, conventional treatments show early clogging of the porosity or/and coating of the reactive grains when high acidity and metal concentrations are treated. The performance of fine-grained reagents dispersed in a high porosity matrix of wood shavings was tested as an alternative to overcome these durability problems. The system consisted of two tanks of 3 m3 filled with limestone sand and wood shavings, and one tank of 1 m3 with caustic magnesia powder and wood shavings, separated by several oxidation cascades and decantation ponds. The system treated about 1.5 m3/day of AMD containing an average of 360 mg/L Fe, 120 mg/L Al, 390 mg/L Zn, 10 mg/L Cu, 300 μg/L As and 140 μg/L Pb, a mean pH of 3.08 and a net acidity of 2500 mg/L as CaCO3 equivalent. The water reached pH 5 and 6 in the first and second limestone tanks, respectively (suitable to remove trivalent metals); and pH 8–9 in the MgO tank (suitable to remove divalent metals). After 9 months of operation, the system achieved an average removal of 100% Al, Cu, As, Pb, more than 70% Fe, about 25% Zn and 80% acidity. Goethite, schwertmannite, hydrobasaluminite, amorphous Al(OH)3 and gypsum were the main precipitates in the two limestone tanks. Precipitation of divalent metals (Fe (II), Zn, and traces of Cd, Ni and Co) were complete inside the third tank of MgO, but preferential flow along the walls was responsible for its low treatment performance. Goethite, gypsum, Zn-schulenbergite and sauconite are the crystalline solid phases identified in the MgO tank.  相似文献   

10.
《Geochimica et cosmochimica acta》1999,63(19-20):3321-3336
Dissolved and particulate trace metal (Al, Cd, Cu, Pb, and Zn) concentrations were determined over a 21 month time period at four streamwater sites in the Pinelands (New Jersey, USA), a coastal plain region characterized by low-pH waters and highly weathered soils. Al and Zn were also determined at two sites over a 5 day period following a major precipitation event. In the Batsto River (pH 4.4–6.3), a representative Pinelands stream draining a largely forested watershed moderately impacted by agriculture, discharge-weighted mean concentrations of dissolved metals were (in nM): Al = 4610; Cd = 0.39; Cu = 4.6; Pb = 1.0; and Zn = 149. Dissolved Cd, Cu, and Zn in the undeveloped Bass River (pH 4.1–4.8) are in a similar range, but Pb concentration is 2–3 times greater. Dissolved metals show highly significant positive correlations to discharge, and weaker inverse relationships to pH over both the long- and short-term time series. Overall, seasonal and short-term variability in dissolved metal concentrations is most consistent with control by hydrologic flow path changes during high discharge, when shallow groundwaters mobilize anthropogenic metals stored in near-surface soil horizons and bypass potential metal removal processes in bordering wetlands. The data also suggest that in-stream metal removal driven by summertime biological productivity may further reduce low-discharge metal concentrations, as a secondary effect. For these metals, the particulate fraction is generally minor, and variations in solution/particle partitioning are unimportant to spatial/temporal variations dissolved concentrations, except for Pb. Estimates of atmospheric input can account for riverine fluxes of these metals, and suggest that Zn retention is minimal in this system, while Pb, Cu and Cd are more strongly retained. The positive relationship between discharge and metals concentration, and the unusually high concentrations in Pinelands streams compared to other world rivers, suggest that riverine effects on metals distributions in the estuary and nearby coastal ocean will be measurable and strongly seasonal.  相似文献   

11.
Seasonal dynamics of dissolved trace metals (Cd, Co, Cu, Ni and Zn) and its relationship with redox conditions and phytoplankton activity has been studied in the Scheldt estuary, during nine surveys carried out between May 1995 and June 1996. Seasonal profiles of dissolved trace metals and general estuarine water quality variables are compared, to identify the geochemical and biological processes responsible for the observed trace metal distributions. In keeping with previous studies, the behavior of dissolved Cd, Cu, and Zn can be explained by the presence of anoxic headwaters and the restoration of dissolved oxygen within the estuary. In the river water, the concentration of dissolved Cu and Zn is generally low, except during winter when dissolved oxygen is present in the water column, although highly undersaturated. Mobilization of particle-bound Cd, Cu, and Zn occurs as dissolved oxygen increases with increasing salinity, possibly because of oxidation of metal sulfides in the suspended matter. The geochemistry of dissolved Co is also related to the redox conditions but in an opposite way. Dissolved Co is mobilized in the anoxic upper estuary, along with the reduction in Mn (hydro) oxides, and subsequently coprecipitated with Mn (hydro) oxides when dissolved oxygen is restored. Conservative behavior is observed for dissolved Ni within the estuary. In the middle estuary, Cd and Zn are readsorbed during phytoplankton blooms, as suggested by the low concentrations of these metals during the most productive periods in spring and early summer. The removal may be caused by direct biological uptake and/or increased adsorption to suspended matter because of the pH increase associated with algae blooms. In the lower estuary, chemical gradients are much weaker and dilution with seawater is the dominant process.  相似文献   

12.
The potential release of metals from anoxic sediments exposed to oxygen was investigated by using a synthetic preparation of metal sulphides dominated by solid phase FeS. The technique of DGT (diffusive gradients in thin-films) was used to measure sulphide and Fe, Mn and Ni in the anoxic metal-sulphide slurry, which had a pH of 6.4. Speciation calculations based on these data showed there was moderate supersaturation with respect to amorphous FeS in the solution phase. Measurements made using DGT with a range of diffusion layer thicknesses showed that when Fe, Mn and Ni are removed from solution there is fairly rapid (minutes) release from the solid phase, that is reasonably well sustained. This presumed desorptive release will be responsible for elevated concentrations of some metals in solution when sediments are resuspended. Oxidation of the slurry by bubbling with air rapidly (hours) removed Fe, Mn and Ni from the pore water solution. While Fe concentrations in solution remained low after the removal, Mn and Ni were transiently released. These results were consistent with initial rapid oxidation of Fe(II) to oxyhydroxides, which remove Mn(II) and Ni by adsorption. The slower oxidation of FeS then releases Mn and Ni, but these too are eventually removed by adsorption to iron oxyhydroxides. These data suggest that oxidation of metal sulphides will contribute to the release of metals from sediment disturbed by dredging or remedial aeration, but it is likely to be short lived, with complete removal within a day.  相似文献   

13.
Treatment of acid mine drainage (AMD) highly rich in sulfate and multiple metal elements has been investigated in a continuous flow column experiment using organic and inorganic reactive media. Treatment substrates that composed of spent mushroom compost (SMC), limestone, activated sludge and woodchips were incorporated into bacterial sulfate reduction (BSR) treatment for AMD. SMC greatly assisted the removals of sulfate and metals and acted as essential carbon source for sulfate-reducing bacteria (SRB). Alkalinity produced by dissolution of limestone and metabolism of SRB has provided acidity neutralization capacity for AMD where pH was maintained at neutral state, thus aiding the removal of sulfate. Fe, Pb, Cu, Zn and Al were effectively removed (87–100%); however, Mn was not successfully removed despite initial Mn reduction during early phase due to interference with Fe. The first half of the treatment was an essential phase for removal of most metals where contaminants were primarily removed by the BSR in addition to carbonate dissolution function. The importance of BSR in the presence of organic materials was also supported by metal fraction analysis that primary metal accumulation occurs mainly through metal adsorption onto the organic matter, e.g., as sulfides and onto Fe/Mn oxides surfaces.  相似文献   

14.
Column bioreactors were used for studying mechanisms of metal removal, assessment of long-term stability of spent reactive mixtures, as well as potential metal mobility after treating highly contaminated acid mine drainage (AMD; pH 2.9–5.7). Several physicochemical, microbiological, and mineralogical analyses were performed on spent reactive mixtures collected from 4 bioreactors, which were tested in duplicate for two hydraulic retention times (7.3d and 10d), with downward flow over an 11-month period. Consistent with the high metal concentrations in the AMD feed, and with low metal concentrations measured in the treated effluent, the physicochemical analyses indicated very high concentrations of metals (Fe, Mn, Cd, Ni, and Zn) in the top and bottom layers of the reactive mixtures from all columns. Moreover, the concentrations of Fe (50.8–57.8 g/kg) and Mn (0.53–0.70 g/kg) were up to twice as high in the bottom layers, whereas the concentrations of Cd (6.77–13.3 g/kg), Ni (1.80–5.19 g/kg) and Zn (2.53–13.2 g/kg) were up to 50-times higher in the top layers. Chemical extractions and elemental analysis gave consistent results, which indicated a low fraction of metals removed as sulfides (up to 15% of total metals recovered in spent reactive mixtures). Moreover, Fe and Mn were found in a more stable chemical form (residual fraction was 42–74% for Mn and 30–77% for Fe) relative to Cd, Ni or Zn, which seemed more weakly bound (oxidisable/reducible fractions) and showed higher potential mobility. Besides identifying (oxy)hydroxide and carbonate minerals, the mineralogical analyses identified metal sulfides containing Fe, Cd, Ni and Zn. Metal removal mechanisms were, therefore, mainly adsorption and other binding mechanisms with organic matter (for Cd, Ni and Zn), and the precipitation as (oxy)hydroxide minerals (for Fe and Mn). After 15 months, however, the column bioreactors did not lose their capacity for removing metals from the AMD. Although the metals were immobile during the bioreactor treatment, their mobility could increase from spent reactive mixtures, if stored inappropriately. Metal recovery by acidic leaching of spent substrates at the end of bioreactor operation could be an alternative.  相似文献   

15.
Experimental studies on the retention of metals (Cu, Co, Ni, and Zn) in bentonite samples from the Grau Region (Northern Peru) have been accomplished using monometallic, bimetallic, trimetallic, and tetrametallic solutions. Parameters such as pH and concentration of dissolved metals and organic compounds have been evaluated by means of batch adsorption experiments. Adsorption rates indicate the suitability of these bentonites in the environmental industry for heavy metals retention purposes. In addition to its quality as physical barrier to avoid the dispersion through the environment of polluted leachates, bentonite, due to its high cation exchange capacity, can act also as a chemical barrier, protecting the quality of surface and groundwater systems, while limiting the migration of heavy metals in solid residues or sludge stocked in security landfills. Adsorption rates of tested bentonites were proved to decrease when concentrations of both metal and organic compounds, as well as the number of ionic species, increase in solution; additionally, lower metal removal rates from solution were obtained when extremely acidic conditions were achieved.  相似文献   

16.
The removal efficiency of water hyacinth for Zn, Cu, Pb and Cd after their entry into an undisturbed fresh water body was studied using minicosms placed within a reservoir. Variable parameters were water pH (6 or 8), single or multi-metal additions, and the plant biomass. The initial concentrations of Zn, Cu, Pb and Cd in water (500, 250, 250 and 50 μg/L, respectively) quickly decreased in the order Pb ≈ Cu ? Cd ≈ Zn in the first days. Metal removal was more efficient at pH 8 than at pH 6, and it was only slightly higher for single metals compared to multi-metal additions. After 8 days the remaining amounts of metals relative to their initial concentrations for multi-metal pollution treatments were 8% and 24% (Cu), 11% and 26% (Pb), 24% and 50% (Cd), and 18% and 57% (Zn) at pH 8 and pH 6, respectively. Increasing plant biomass promoted faster metal removal. The bioconcentration factor (the ratio of the metal concentration in whole plants to the initial metal concentration in water) exceeds 2000 for all metals (with the exception of Zn and Cd at pH 6). It was concluded that the water hyacinth can be successfully used for fast removal of metals in the initial stage of water body remediation.  相似文献   

17.
Mining and milling of base metal ore deposits can result in the release of metals to the environment. When sulfide minerals contained in mine tailings are exposed to oxygen and water, they oxidize and dissolve. Two principal antagonistic geochemical processes affect the migration of dissolved metals in tailings impoundments: sulfide oxidation and acid neutralization. This study focuses on acid neutralization reactions occurring in the saturated zone of tailings impoundments. To simulate conditions prevailing in many tailings impoundments, 0.1 mol/L sulfuric acid was passed continuously through columns containing fresh, unoxidized tailings, collected at Kidd Creek metallurgical site. The results of this column experiment represent a detailed temporal observation of pH, Eh, and metal concentrations. The results are consistent with previous field observations, which suggest that a series of mineral dissolution-precipitation reactions control pH and metal mobility. Typically, the series consists of carbonate minerals, Al and Fe(III) hydroxides, and aluminosilicates. In the case of Kidd Creek tailings, the dissolution series consists of ankerite-dolomite, siderite, gibbsite, and aluminosilicates. In the column experiment, three distinct pH plateaus were observed: 5.7, 4.0, and 1.3. The releases of trace elements such as Cd, Co, Cr, Cu, Li, Ni, Pb, V, and Zn were observed to be related to the pH buffering zones. High concentrations of Zn, Ni, and Co were observed at the first pH plateau (pH 5.7), whereas Cd, Cr, Pb, As, V, and Al were released as the pH of the pore water decreased to 4.0 or less.  相似文献   

18.
Trace metals (e.g. Ni, Zn) leached from industrial and agricultural processes are often simultaneously present in contaminated soils and sediments. Their mobility, bioavailability, and ecotoxicity are affected by sorption and cosorption at mineral/solution interfaces. Cosorption of trace metals has been investigated at the macroscopic level, but there is not a clear understanding of the molecular-scale cosorption processes due to lack of spectroscopic information. In this study, Ni and Zn cosorption to aluminum oxides (γ-Al2O3) in binary-sorbate systems were compared to their sorption in single-sorbate systems as a function of pH using both macroscopic batch experiments and synchrotron-based X-ray absorption fine structure spectroscopy. At pH 6.0, Ni and Zn were sorbed as inner-sphere surface complexes and competed for the limited number of reactive sites on γ-Al2O3. In binary-sorbate systems, Ni had no effect on Zn sorption, owning to its lower affinity for the metal oxide surface. In contrast, Zn had a higher affinity for the metal oxide surface and reduced Ni sorption. At pH 7.5, Ni and Zn were sorbed as mixed-metal surface precipitates, including Ni–Al layered double hydroxides (LDHs), Zn–Al LDHs, and likely Ni–Zn–Al layered triple/ternary hydroxides. Additionally, at pH 7.5, Ni and Zn do not exhibit competitive sorption effects in the binary system. Taken together, these results indicated that pH critically influenced the reaction products, and provides a crucial scientific basis to understand the potential mobility, bioavailability, and ecotoxicity of Ni and Zn in natural and contaminated geochemical environments.
  相似文献   

19.
Apparent overall equilibrium constants for the adsorption of Cd, Cu, Ni, Pb and Zn onto natural iron oxyhydroxides have been calculated from the partitioning of these trace metals in oxic lake sediments and the in situ measurement of trace metal concentrations in the associated pore waters. Such values obtained from lakes of various pH located on the Precambrian Shield, in the area of Sudbury, Ontario, are compared with equilibrium constants obtained for the adsorption of the trace metals onto iron oxyhydroxides in well-defined media.The field data are consistent with laboratory experiments reported in the literature and with theory. Both the influence of pH upon adsorption and the binding strength sequence observed for the field data agree with theory. At high sediment pH values, the partitioning of Cd, Ni and Zn between the pore waters and the natural iron oxyhydroxides is similar to those reported in the literature for the adsorption of these metals at low surface coverage onto amorphous iron oxyhydroxides in a NaNO3 medium; deviation from this simple model is however observed for Cu and Pb, presumably due to the competitive action of dissolved ligands. At low sediment pH values, the adsorption is much higher than predicted by the simple model and can be explained by the formation of ternary complexes with the iron oxyhydroxide surface.  相似文献   

20.
Groundwater pollution is a major global environmental issue especially in the large cities and trace metals are considered as most important aquatic pollutants. The present study is based on the measurement and characterization of various physicochemical parameters (pH, EC, TDS, DO, alkalinity, hardness, and chloride), major cations (Ca, Mg, Na and K) and selected trace metals (Sr, Li, Fe, Zn, Cu, Co, Mn, Ag, Cd, Cr, Ni, and Pb) in the groundwater of Lahore, Pakistan during summer and winter (2017–18) seasons. Groundwater is the main source of drinking water in urban areas of Lahore. Seasonal comparison of the data indicated that majority of the metals showed relatively higher concentrations during winter than summer. Most of the metals exhibited significant spatial variability during both seasons; relatively higher metal levels were found in the old settlements and thickly populated areas of the city. Average concentrations of Pb, Ni, Cd and Co in the groundwater were found to be higher than the national and international guideline values. Factor analysis and cluster analysis revealed major anthropogenic contributions of Ni, Co, Cd, Cu, Cr and Pb in the groundwater while rest of the metals showed mixed and/or natural contributions. Evaluation of human health risks for the metal contents in groundwater revealed that Pb, Co, Ni and Cd were associated with significantly higher non-carcinogenic risks (HQing > 1); the calculated risk for children was considerably higher than the adults. Moreover, the carcinogenic risk associated with Ni, Cr, Cd and Pb exceeded the safe limits. The present study revealed significantly higher anthropic pollutants in the groundwater which imposed considerable risks to human; therefore, it is recommended to implement immediate remedial measures to ensure safe drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号