首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We use line-of-sight velocity information on the filamentary emission-line nebula of NGC 1275 to infer a dynamical model of the nebula's flow through the surrounding intracluster gas. We detect outflowing gas and flow patterns that match simulations of buoyantly rising bubbles from which we deduce that some of the nebula filaments have been drawn out of NGC 1275. We find a radial gradient of the ratio [N  ii ]λ6584/Hα which may be due to a variation in metallicity, interactions with the surrounding intracluster medium or a hardening of the excitation mechanism. We find no preferred spatial correlation of stellar clusters within the filaments and there is a notable lack of [O  iii ]λ5007 emission, therefore it is unlikely that the filaments are ionized by stellar ultraviolet.  相似文献   

3.
4.
5.
We report the results of a study of X-ray point sources coincident with the high-velocity system (HVS) projected in front of NGC 1275. A very deep X-ray image of the core of the Perseus cluster, made with the Chandra X-ray Observatory , has been used. We find a population of ultraluminous X-ray sources [ULXs; seven sources with   L X(0.5 − 7.0  keV) > 7 × 1039 erg s-1  ]. As with the ULX populations in the Antennae and Cartwheel galaxies, those in the HVS are associated with a region of very active star formation. Several sources have possible optical counterparts found on the Hubble Space Telescope ( HST ) images, although the X-ray brightest one does not. Absorbed power-law models fit the X-ray spectra, with most having a photon index between 2 and 3.  相似文献   

6.
7.
Deep SCUBA observations of NGC 1275 at 450 and 850 μm along with the application of deconvolution algorithms have permitted us to separate the strong core emission in this galaxy from the fainter extended emission around it. The core has a steep spectral index and is likely caused primarily by the active galactic nucleus. The faint emission has a positive spectral index and is clearly caused by extended dust in a patchy distribution out to a radius of ∼20 kpc from the nucleus. These observations have now revealed that a large quantity of dust, ∼     (two orders of magnitude larger than that inferred from previous optical absorption measurements), exists in this galaxy. We estimate the temperature of this dust to be ∼20 K (using an emissivity index of     and the gas/dust ratio to be 360. These values are typical of spiral galaxies. The dust emission correlates spatially with the hot X-ray emitting gas, which may be a result of collisional heating of broadly distributed dust by electrons. As the destruction time-scale is short, the dust cannot be replenished by stellar mass loss and must be externally supplied, via either the infalling galaxy or the cooling flow itself.  相似文献   

8.
The central arcminute of the Perseus cooling flow galaxy, NGC 1275, has been mapped with the JCMT in 12CO(2–1) at 21-arcsec resolution, with detections out to at least 36 arcsec (12 kpc). Within the limits of the resolution and coverage, the distribution of gas appears to be roughly east–west, consistent with previous observations of CO, X-ray, Hα and dust emission. The total detected molecular hydrogen mass is ∼ 1.6 × 1010 M, using a Galactic conversion factor. The inner central rotating disc is apparent in the data, but the overall distribution is not one of rotation. Rather, the line profiles are bluewards-asymmetric, consistent with previous observations in H  i and [O  iii ]. We suggest that the blueshift may be due to an acquired mean velocity of ∼ 150 km s−1 imparted by the radio jet in the advancing direction. Within the uncertainties of the analysis, the available radio energy appears to be sufficient, and the interpretation is consistent with that of Bo¨hringer et al. for displaced X-ray emission. We have also made the first observations of 13CO(2–1) and 12CO(3–2) emission from the central 21-arcsec region of NGC 1275 and combined these data with IRAM data supplied by Reuter et al. to form line ratios over equivalent, well-sampled regions. An LVG radiative transfer analysis indicates that the line ratios are not well reproduced by single values of kinetic temperature, molecular hydrogen density and abundance per unit velocity gradient. At least two temperatures are suggested by a simple two-component LVG model, possibly reflecting a temperature gradient in this region.  相似文献   

9.
The X-ray holes at the centre of the Perseus cluster of galaxies are not all at the same position angle with respect to the centre of the cluster. This configuration would result if the jet inflating the bubbles is precessing, or moving around, and the bubbles detach at different times. The orientations which best fit the observed travel directions are an inclination of the precession axis to the line of sight of 120° and an opening angle of 50°. From the time-scales for the bubbles seen in the cluster, the precession time-scale, τprec, is around  3.3 × 107 yr  . The bubbles rising up through different parts of the cluster may have interacted with the central cool gas, forming the whorl of cool gas observed in the temperature structure of the cluster. The dynamics of bubbles rising in fluids is discussed. The conditions present in the cluster are such that oscillatory motion, observed for bubbles rising in fluids on Earth, should take place. However, the time-scale for this motion is longer than that taken for the bubbles to evolve into spherical-cap bubbles, which do not undergo a path instability, so such motion is not expected to occur.  相似文献   

10.
11.
We present a study of the dwarf elliptical galaxy NGC 855 using the narrow-band Hα and Spitzer data. Both the Hα and Spitzer IRAC images confirm star-forming activity in the center of NGC 855. We obtained a star formation rate (SFR) of 0.022 and 0.025M◎yr-1,respectively,from the Spitzer IRAC 8.0μm and MIPS 24μm emission data. The HI observa-tion suggests that the star-forming activity might be triggered by a minor merger. We also find that there is a distinct IR emission region in 5.8 and 8.0μm bands,located at about 10 away from the nucleus of NGC 855. Given the strong 8.0μm but faint Hα emission,we expect that it is a heavily obscured star-forming region,which needs to be confirmed by further optical spectroscopic observations.  相似文献   

12.
13.
14.
15.
We have obtained Keck spectra for 16 globular clusters (GCs) associated with the merger remnant elliptical NGC 1052, as well as a long-slit spectrum of the galaxy. We derive ages, metallicities and abundance ratios from simple stellar population models using the recently published methods of Proctor & Sansom , applied to extragalactic GCs for the first time. A number of GCs indicate the presence of strong blue horizontal branches that are not fully accounted for in the current stellar population models. We find all of the GCs to be ∼13 Gyr old according to simple stellar populations, with a large range of metallicities. From the galaxy spectrum we find NGC 1052 to have a luminosity-weighted central age of ∼2 Gyr and metallicity of  [Fe/H]∼+0.6  . No strong gradients in either age or metallicity were found to the maximum radius measured  (0.3  r e≃ 1 kpc)  . However, we do find a strong radial gradient in α-element abundance, which reaches a very high central value. The young central starburst age is consistent with the age inferred from the H  i tidal tails and infalling gas of ∼1 Gyr. Thus, although NGC 1052 shows substantial evidence for a recent merger and an associated starburst, it appears that the merger did not induce the formation of new GCs, perhaps suggesting that little recent star formation occurred. This interpretation is consistent with 'frosting' models for early-type galaxy formation.  相似文献   

16.
17.
18.
We calculate the expected mid-infrared (MIR) molecular hydrogen line emission from the first objects in the Universe. As a result of their low masses, the stellar feedback from massive stars is able to blow away their gas content and collect it into a cooling shell where H2 rapidly forms and IR roto-vibrational (as for example the rest-frame 2.12 μm) lines carry away a large fraction (up to 10 per cent) of the explosion energy. The fluxes from these sources are in the range 10−21–10−17 erg s−1 cm−2 . The highest number counts are expected in the 20-μm band, where about 105 sources deg−2 are predicted at the limiting flux of 3×10−18 erg s−1 cm−2. Among the planned observational facilities, we find that the best detection perspectives are offered by the Next Generation Space Telescope ( NGST ), which should be able to reveal about 200 first objects in one hour observation time at its limiting flux in the above band. Therefore, mid-IR instruments appear to represent perfect tools to trace star formation and stellar feedback in the high ( z ≳5) redshift Universe.  相似文献   

19.
20.
We present wide-area UBRI photometry for globular clusters around the Leo group galaxy NGC 3379. Globular cluster candidates are selected from their B -band magnitudes and their  ( U − B ) o   versus  ( B − I ) o   colours. A colour–colour selection region was defined from photometry of the Milky Way and M31 globular cluster systems. We detect 133 globular cluster candidates, which supports previous claims of a low specific frequency for NGC 3379.
The Milky Way and M31 reveal blue and red subpopulations, with  ( U − B ) o   and  ( B − I ) o   colours indicating mean metallicities similar to those expected based on previous spectroscopic work. The stellar population models of Maraston and Brocato et al. are consistent with both subpopulations being old, and with metallicities of  [Fe/H]∼−1.5  and −0.6 for the blue and red subpopulations, respectively. The models of Worthey do not reproduce the  ( U − B ) o   colours of the red (metal-rich) subpopulation for any modelled age.
For NGC 3379 we detect a blue subpopulation with similar colours, and presumably age/metallicity, to that of the Milky Way and M31 globular cluster systems. The red subpopulation is less well defined, perhaps due to increased photometric errors, but indicates a mean metallicity of [Fe/H]∼−0.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号