首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pump and treat has been successful in significantly reducing the volatile organic contaminant concentrations in ground water in Santa Clara Valley. California. The California Regional Water Quality Control Board. San Francisco Bay Region, currently oversees 61 sites in Santa Clara Valley with operating pump-and-treat systems, of which 42 sites have been extracting ground water since at least 1987. This review- evaluates the effects of ground water extraction on contaminant concentrations at 37 of those 42 sites. The evaluation focuses on trichloroethane, trichloroethene, and dichloroethane, as these were the most prevalent contaminants encountered at the sites. The majority of sites obtained greater than 90 percent reduction in maximum concentrations for one or more of the three contaminants. While only one of the 37 sites obtained maximum contaminant levels (MCL) for all contaminants, six of the sites included in the analyses reached MCLs for one or more of the sampled contaminants, and an additional seven of the sites are near MCLs for al least one contaminant. Our findings indicate that, while pump and treat successfully reduced maximum concentrations al most of the sites reviewed, successful attempts to reduce maximum contaminant concentrations to below MCLs are limited.  相似文献   

2.
Bank filtration and artificial ground water recharge are important, effective, and cheap techniques for surface water treatment and removal of microbes, as well as inorganic, and some organic, contaminants. Nevertheless, physical, chemical, and biological processes of the removal of impurities are not understood sufficiently. A research project titled Natural and Artificial Systems for Recharge and Infiltration attempts to provide more clarity in the processes affecting the removal of these contaminants. The project focuses on the fate and transport of selected emerging contaminants during bank filtration at two transects in Berlin, Germany. Several detections of pharmaceutically active compounds (PhACs) in ground water samples from bank filtration sites in Germany led to furthering research on the removal of these compounds during bank filtration. In this study, six PhACs including the analgesic drugs diclofenac and propyphenazone, the antiepileptic drugs carbamazepine and primidone, and the drug metabolites clofibric acid and 1-acetyl-1-methyl-2-dimethyl-oxamoyl-2-phenylhydrazide were found to leach from the contaminated streams and lakes into the ground water. These compounds were also detected at low concentrations in receiving public supply wells. Bank filtration either decreased the concentrations by dilution (e.g., for carbamazepine and primidone) and partial removal (e.g., for diclofenac), or totally removed PhACs (e.g., bezafibrate, indomethacine, antibiotics, and estrogens). Several PhACs, such as carbamazepine and especially primidone, were readily transported during bank filtration. They are thought to be good indicators for evaluating whether surface water is impacted by contamination from municipal sewage effluent or whether contamination associated with sewage effluent can be transported into ground water at ground water recharge sites.  相似文献   

3.
Seepage from tailings ponds associated with an active uranium mill in Utah has resulted in contamination of ground water contained in the Dakota-Burro Canyon Formation. This aquifer is used in the area as a supply for domestic and industrial wells.
Results of very low-frequency electromagnetic surveys and ground water quality investigations at the site indicated that the flow of ground water and contaminants is primarily fracture-controlled. Pumping tests were conducted to determine the hydraulic characteristics of the fractured system. The extent of contaminant migration was then determined using an analytical model of transport in fractured aquifers.
Based on these investigations, a plan was designed to control future and remediate past ground water contamination. This plan consists of pumping from a single well intersecting the main fracture that transports contaminants off the site. The effectiveness of the plan was analytically modeled, taking account of the anisotropy of the ground water system. Subsequent monitoring of water levels in the area indicates that the plan has been effective since its inception in November 1983.  相似文献   

4.
Evaluation of volatilization as a natural attenuation pathway for MTBE   总被引:2,自引:0,他引:2  
Lahvis MA  Baehr AL  Baker RJ 《Ground water》2004,42(2):258-267
Volatilization and diffusion through the unsaturated zone can be an important pathway for natural attenuation remediation of methyl tert-butyl ether (MTBE) at gasoline spill sites. The significance of this pathway depends primarily on the distribution of immiscible product within the unsaturated zone and the relative magnitude of aqueous-phase advection (ground water recharge) to gaseous-phase diffusion. At a gasoline spill site in Laurel Bay, South Carolina, rates of MTBE volatilization from ground water downgradient from the source are estimated by analyzing the distribution of MTBE in the unsaturated zone above a solute plume. Volatilization rates of MTBE from ground water determined by transport modeling ranged from 0.0020 to 0.0042 g m(-2)/year, depending on the assumed rate of ground water recharge. Although diffusive conditions at the Laurel Bay site are favorable for volatilization, mass loss of MTBE is insignificant over the length (230 m) of the solute plume. Based on this analysis, significant volatilization of MTBE from ground water downgradient from source areas at other sites is not likely. In contrast, model results indicate that volatilization coupled with diffusion to the atmosphere could be a significant mass loss pathway for MTBE in source areas where residual product resides above the capillary zone. Although not documented, mass loss of MTBE at the Laurel Bay site due to volatilization and diffusion to the atmosphere are predicted to be two to three times greater than mass loading of MTBE to ground water due to dissolution and recharge. This result would imply that volatilization in the source zone may be the critical natural attenuation pathway for MTBE at gasoline spill sites, especially when considering capillary zone limitations on volatilization of MTBE from ground water and the relative recalcitrance of MTBE to biodegradation.  相似文献   

5.
Large-scale column experiments were undertaken to evaluate the potential of polymer mats to remove selected volatile organic compounds, polycyclic aromatic hydrocarbons, and pesticides (atrazine and fenamiphos) from ground water and potentially to act as permeable reactive barriers in contaminated ground water environments. The polymer mats, composed of interwoven silicone (dimethylsiloxane) tubes and purged with air, were installed in 2 m long flow-through columns. The polymer mats proved efficient in physically removing (stripping) benzene and naphthalene from contaminated water. Removal efficiencies for both these compounds from an aqueous phase flowing past a polymer mat were 75% or greater. However, for atrazine and fenamiphos, removal efficiencies were 5% or less, probably as a result of their lower Henry's law constants and possibly lower polymer diffusion coefficients.
These experiments indicate that, at least for relatively volatile compounds, polymer mats can provide a remediation technique for the removal of organic compounds from contaminated water. Application of this technique may be well suited as a longer-term, semipassive strategy to remediate contaminated ground water, using natural ground water flow to deliver contaminated ground water to polymer mats engineered as sorption-stripping barriers.
Additional benefits of this technique may include targeted delivery of gaseous chemical amendments, such as oxygen, to enhance aerobic biodegradation and to further reduce any residual concentrations of contaminants.  相似文献   

6.
Contaminants may persist for long time periods within low permeability portions of the vadose zone where they cannot be effectively treated and are a potential continuing source of contamination to ground water. Setting appropriate vadose zone remediation goals typically requires evaluating these persistent sources in terms of their impact on meeting ground water remediation goals. Estimating the impact on ground water can be challenging at sites with low aqueous recharge rates where vapor-phase movement is the dominant transport process in the vadose zone. Existing one-dimensional approaches for simulating transport of volatile contaminants in the vadose zone are considered and compared to a new flux-continuity-based assessment of vapor-phase contaminant movement from the vadose zone to the ground water. The flux-continuity-based assessment demonstrates that the ability of the ground water to move contaminant away from the water table controls the vapor-phase mass flux from the vadose zone across the water table. Limitations of these approaches are then discussed with respect to the required assumptions and the need to incorporate three-dimensional processes when evaluating vapor-phase transport from the vadose zone to the ground water. The carbon tetrachloride plume at the U.S. Department of Energy Hanford Site is used as the example site where persistent vadose zone contamination needs to be considered in the context of ground water remediation.  相似文献   

7.
Liquid wastes, including metals dissolved in nitric acid, were discharged into the S-3 Ponds from 1951 to 1983. During this period, contaminants in ground water spread along shallow fracture flow paths toward nearby streams. Also, a high concentration of nitrate in one well at a depth of 110 to 240 in shows that some contaminants may have moved downdip because of differences in fluid density. Neutralization of the ponds in June 1983 caused a dramatic decrease in the contaminant concentrations of Bear Creek about three months later. Since then, the contaminant concentrations of Bear Creek have decreased at a first-order exponential rate. This average rate, which is the same for both more reactive and less reactive constituents, can be interpreted to show that the contaminant reservoir consists of the unfractured rock matrix.
Flushing caused by the natural recharge and discharge of ground water is occurring at all locations, but contaminant concentrations are controlled by the relative rates of molecular diffusion from the rock matrix and advection along the fracture flow paths. Hushing has thus been most effective near the water table. If the exponential decrease in contaminant concentrations continues, water in Bear Creek will meet drinking water standards by 2012: regardless of any remedial action, contaminants will remain in the rocks for many years.  相似文献   

8.
Analytical Model for Contaminant Mass Removal by Air Sparging   总被引:2,自引:0,他引:2  
An analytical model was developed lo predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicted tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.  相似文献   

9.
A field lest to evaluate the applicability of an oxygon-releasing compound (ORC) to the rernediation of ground water contaminated with benzone and toluene was conducted in the Borden Aquifer in Ontario. Canada. Benzene and toluene were injected as organic substrates to represent BTEX compounds, bromide was used as a tracer, and nitrate was added to avoid nitrate-limited conditions.
The fate of the solutes was monitored along four lines of monitoring points and wells. Two lines studied the behavior of the solutes upgradient and downgradient of two large-diameter well screens filled with briquets containing ORC and briquets without ORC. One line was used to study the solute behavior upgradient and downgradient of columns of ORC powder placed directly in the saturated zone. The remaining line was a control.
The results indicate that ORC in both briquet and powder form can release significant amounts of oxygen to conlaminated ground water passing by it. In the formulation used in this work, oxygen release persisted for at least 10 weeks. Furthemiore, the study indicates that the enhancement of the available dissolved oxygen content of at least 4 mg/L each of the ground water by ORC can support biodegradation of benzene and toluene dissolved in ground water. Such concentrations are typical of those encountered at sites contaminated with petroleum hydrocarbons; therefore, these results suggest that there is promise for ORC to enhance in situ biodegradation of BTKX contaminants at such sites using passive (nonpumping) systems to contact the contaminated ground water with the oxygen source.  相似文献   

10.
Interceptor trenches are an effective ground water control method at waste management sites. Trenches may be installed without disturbing the wastes, and the withdrawal of ground water recovers contaminants that have left the waste management perimeter. The rapid and steep depression of the piezometric surface on both sides of the trench is positive proof of a barrier to horizontal flow across the trench in the affected permeable units.
Historically, the construction of interceptor trenches has been very difficult. A new and efficient installation method has been developed and successfully utilized for several applications at a petrochemical facility on the Texas coastal plain. Rapid and cost-effective installation is made possible by innovations in sump and trench construction and the tie-in between the two.
The sump is constructed first using standard well construction techniques to drill a 96-inch diameter hole to contain the 42-inch diameter polyethylene pipe sump. A European designed and fabricated trenching machine then excavates the trench, inserts the drainage pipe and backfills with sand and/or gravel in one operation. A specially designed perforated pipe entry door built into the side of the sump barrel provides for efficient and safe connection of the drainage pipe to the specially designed collection sump. The effectiveness of interceptor trenches has been confirmed in full scale applications through the reversal of flow gradients and the prevention of continued horizontal migration of ground water contaminants.  相似文献   

11.
Eighteen sites in South Carolina under investigation by the Superfund program were sampled to determine ambient ground water quality. Samples from 11 of 15 monitoring wells sampled with a bailer contained either caprolactam or Santowhite® (a registered trademark of the Monsanto Co.) or both organic compounds. A maximum of 540 μg/L of caprolactam and 780 μg/L of Santowhite was observed in the samples from the monitoring wells. None of the samples collected using dedicated submersible pumps at 28 other wells contained either compound.
Caprolactam is used in the manufacturing of nylon cord, and Santowhite is used as an antioxidant in latex gloves. Therefore, it was suspected that the nylon cord used to raise and lower the bailer and the latex gloves that were worn during sampling may have contributed the caprolactam and Santowhite to the sample.
An experiment using pH-adjusted distilled water and private well water revealed that the nylon cord and the latex gloves may contribute contaminants to ground water samples. Research is needed into the potential for caprolactam and Santowhite to interfere with laboratory analyses in addition to the potential for absorption of contaminants by nylon cord. Until additional information is available, alternative materials or sampling techniques should be considered to minimize the potential impact of nylon cord and latex gloves on the quality of bailed samples.  相似文献   

12.
Water samples collected from 26 sites at an abandoned oil refinery in south-central Kansas were analyzed for total organic carbon (TOC) and specific volatile and semivolatile organic compounds by gas-chromatography/mass-spectrometric methods. Results from a Spearman-rho correlation analysis between TOC concentration and the number of compounds (correlation coefficient = 0.71) and TOC concentration and total concentration of compounds identified (correlation coefficient = 0.83) indicate correlations significant at the 0.01 level.
Although TOC data alone would not be sufficient to evaluate hazards posed by oil-refinery wastes, results of the correlation analysis performed using data collected from the site in Kansas indicate that TOC data can be used effectively to delineate petroleum-related ground water contamination and to help identify sources of ground water contaminants. TOC data collected from a large number of temporary sampling points during the initial phases of an investigation will provide an estimate of the extent of hydrocarbon contamination and allow placement of monitoring wells and more detailed sampling in appropriate areas.  相似文献   

13.
Ground water samples collected from the Norman Landfill research site in central Oklahoma were analyzed as part of the U.S. Geological Survey (USGS) Toxic Substances Hydrology Program's national reconnaissance of pharmaceuticals and other organic waste water contaminants (OWCs) in ground water. Five sites, four of which are located downgradient of the landfill, were sampled in 2000 and analyzed for 76 OWCs using four research methods developed by the USGS. OWCs were detected in water samples from all of the sites sampled, with 22 of the 76 OWCs being detected at least once. Cholesterol (a plant and animal steroid), was detected at all five sites and was the only compound detected in a well upgradient of the landfill. N,N-diethyltoluamide (DEBT used in insect repellent) and tri(2-chloroethyl) phosphate (fire-retardant) were detected in water samples from all four sites located within the landfill-derived leachate plume. The sites closest to the landfill had more detections and greater concentrations of each of the detected compounds than sites located farther away. Detection of multiple OWCs occurred in the four sites located within the leachate plume, with a minimum of four and a maximum of 17 OWCs detected. Because the landfill was established in the 1920s and closed in 1985, many compounds detected in the leachate plume were likely disposed of decades ago. These results indicate the potential for long-term persistence and transport of some OWCs in ground water.  相似文献   

14.
Consumption of aquifer Fe(III) during biodegradation of ground water contaminants may result in expansion of a contaminant plume, changing the outlook for monitored natural attenuation. Data from two research sites contaminated with petroleum hydrocarbons show that toluene and xylenes degrade under methanogenic conditions, but the benzene and ethylbenzene plumes grow as aquifer Fe(III) supplies are depleted. By considering a one-dimensional reaction front in a constant unidirectional flow field, it is possible to derive a simple expression for the growth rate of a benzene plume. The method balances the mass flux of benzene with the Fe(III) content of the aquifer, assuming that the biodegradation reaction is instantaneous. The resulting expression shows that the benzene front migration is retarded relative to the ground water velocity by a factor that depends on the concentrations of hydrocarbon and bioavailable Fe(III). The method provides good agreement with benzene plumes at a crude oil study site in Minnesota and a gasoline site in South Carolina. Compared to the South Carolina site, the Minnesota site has 25% higher benzene flux but eight times the Fe(III), leading to about one-sixth the expansion rate. Although it was developed for benzene, toluene, ethylbenzene, and xylenes, the growth-rate estimation method may have applications to contaminant plumes from other persistent contaminant sources.  相似文献   

15.
Site 24 was the subject of a 14-year (5110-day) study of a ground water plume created by the disposal of manufactured gas plant (MGP) tar into a shallow sandy aquifer approximately 25 years prior to the study. The ground water plume in 1988 extended from a well-defined source area to a distance of approximately 400 m down gradient. A system of monitoring wells was installed along six transects that ran perpendicular to the longitudinal axis of the plume centerline. The MGP tar source was removed from the site in 1991 and a 14-year ground water monitored natural attenuation (MNA) study commenced. The program measured the dissolved mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs) periodically over time, which decreased significantly over the 14-year period. Naphthalene decreased to less than 99% of the original dissolved mass, with mass degradation rates of 0.30 per year (half-life 2.3 years). Bulk attenuation rate constants for plume centerline concentrations over time ranged from 0.33 ± 0.09 per year (half-life 2.3 ± 0.8 years) for toluene and 0.45 ± 0.06 per year (half-life 1.6 ± 0.2 years) for naphthalene. The hydrogeologic setting at Site 24, having a sandy aquifer, shallow water table, clay confining layer, and aerobic conditions, was ideal for demonstrating MNA. However, these results demonstrate that MNA is a viable remedial strategy for ground water at sites impacted by MAHs and PAHs after the original source is removed, stabilized, or contained.  相似文献   

16.
Waste disposal sites with volatile organic compounds (VOCs) frequently contain contaminants that are present in both the ground water and vadose zone. Vertical sampling is useful where transport of VOCs in the vadose zone may effect ground water and where steep vertical gradients in chemical concentrations are anticipated. Designs for combination ground water and gas sampling wells place the tubing inside the casing with the sample port penetrating the casing for sampling. This physically interferes with pump or sampler placement. This paper describes a well design that combines a ground water well with gas sampling ports by attaching the gas sampling tubing and ports to the exterior of the casing. Placement of the tubing on the exterior of the casing allows exact definition of gas port depth, reduces physical interference between the various monitoring equipment, and allows simultaneous remediation and monitoring in a single well. The usefulness and versatility of this design was demonstrated at the Idaho National Engineering and Environmental Laboratory (INEEL) with the installation of seven wells with 53 gas ports, in a geologic formation consisting of deep basalt with sedimentary interbeds at depths from 7.2 to 178 m below land surface. The INEEL combination well design is easy to construct, install, and operate.  相似文献   

17.
A model is presented for estimating vapor concentrations in buildings because of volatilization from soil contaminated by non- aqueous phase liquids (NAPL) or from dissolved contaminants in ground water. The model considers source depletion, diffusive- dispersive transport of the contaminant of concern (COC) and of oxygen and oxygen-limited COC biodecay. Diffusive-advective transport through foundations and vapor losses caused by foundation cross-flow are considered. Competitive oxygen use by various species is assumed to be proportional to the product of the average dissolved-phase species concentration and a biopreference factor. Laboratory and field data indicate the biopreference factor to be proportional to the organic carbon partition coefficient for the fuel hydrocarbons studied. Predicted indoor air concentrations were sensitive to soil type and subbase permeability. Lower concentrations were predicted for buildings with shallow foundations caused by flushing of contaminants by cross-flow. NAPL source depletion had a large impact on average exposure concentration. Barometric pumping had a minor effect on indoor air emissions for the conditions studied. Risk-based soil cleanup levels were much lower when biodecay was considered because of the existence of a threshold source concentration below which no emissions occur. Computed cleanup levels at NAPL-contaminated sites were strongly dependent on total petroleum hydrocarbon (TPH) content and COC soil concentration. The model was applied to two field sites with gasoline-contaminated ground water. Confidence limits of predicted indoor air concentrations spanned approximately two orders of magnitude considering uncertainty in model parameters. Measured contaminant concentrations in indoor air were within model-predicted confidence limits.  相似文献   

18.
Scientists engaged in the appraisal of ground water contaminated by organic substances are faced with the problems of difficult sample collection and timely chemical analysis. High-performance liquid chromatography was evaluated for on-site determination of specific organic contaminants in ground water samples and was used at three study sites. Organic solutes were determined directly in water samples, with little or no preparation, and usually in less than an hour after collection. This information improved sampling efficiency and was useful in screening for subsequent laboratory analysis. On two occasions, on-site analysis revealed that samples were undergoing rapid change, with major solutes being upgraded and alteration products being formed. In addition to sample stability, this technique proved valuable for monitoring other sampling factors such as compositional changes with respect to pumping, filtration, and cross contamination.  相似文献   

19.
Ground water quality data generated during the investigation of 334 hazardous waste disposal sites were used to contrast the Resource Conservation and Recovery Act (RCRA) and Comprehensive Emergency Response, Compensation and Liability Act (CERCLA) monitoring. programs. The minimum RCRA-required network of four wells was equaled or exceeded at 94 percent of the 156 RCRA sites and 70 percent of the 178 CERCLA sites in the data base. A sampling frequency of four events per year or more was used at 60 percent of the RCRA sites compared to only 24 percent at the CERCLA sites. CERCLA records compiled to date indicate that 480 compounds have been detected and another 220 compounds have been tentatively identified in ground water in the vicinity of hazardous waste disposal sites. However, the composite data from 123 RCRA site monitoring programs only indicates the presence of 100 chemical substances. The most significant discrepancy in the RCRA detection monitoring program is that it only generates data on three of the 20 organic contaminants that have been most frequently detected during the CERCLA hazardous waste disposal site investigations. Modification of the current RCRA program to include routine analysis for volatile organic compounds would correct this weakness.  相似文献   

20.
In recent years there has been increasing interest in the application of passive technologies to reduce or remove contaminants from the subsurface environment including soil and ground water. In most cases, the impetus for this interest lies in a perceived savings compared with more traditional remedial alternatives. In a few cases, the infrastructure at contaminated sites, such as buildings, paved areas, and utilities, makes the use of conventional remedial measures difficult and expensive.
To demonstrate that natural processes are effective in reaching established goals, it is necessary to determine that transformation processes are taking place at a rate that is protective of human health and the environment and that these processes will continue for an acceptable period of time. The basic conditions that must be present to confirm natural attenuation processes arc taking place are discussed along with the behavior of contaminated plumes, monitoring requirements, data analysis, rates of degradation, and mathematical modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号