首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Measurements of dissolved Cd, Co, Cu, Mn, Ni, Pb, and Zn have been made on a seasonal basis at five stations on a north–south transect across the central English Channel between Cherbourg and the Isle of Wight. Vertical and horizontal distributions of dissolved Cd, Pb, Cu and Zn are relatively uniform except for sampling sites near the English coast. Dissolved Mn and Co show increased concentrations in the English coastal waters, and for Mn the seasonal trend in concentration follows the pattern seen in the Strait of Dover with higher values in the late summer. Ni and Cu are higher in concentration on the English side, which reflects mainly riverine sources. Measurements were also made of particulate forms of the metals above plus particulate Al, Ca, Fe, Mg, Sr and Ti. Water column concentrations of particulate metals broadly follow the distribution of suspended particulate matter, with highest concentrations near the UK coast. Trace metal concentrations have been integrated with modelled data on fluxes of water to provide estimates of fluxes for these elements into the eastern Channel, and an initial comparison is made with data for fluxes of metals through the Strait of Dover obtained during an earlier study. A major influence on the fluxes of particulate metals through the Isle of Wight-Cherbourg transect is the gyre system to the South east to the Isle of Wight, which has important east to west as well as west to east transport components. For those elements where the dissolved form of the metal dominates, the large flow of water in the central Channel waters leads to major fluxes of the metals towards the east and the Strait of Dover. However, the high suspended particulate matter loadings in the coastal waters and impact of the gyre system lead to net east to west fluxes of particulate Al, Fe, Mn and Ti. Comparison of these fluxes with data on the net west to east transport of these materials through the Strait of Dover infers that there must be a significant supply of these particulate metals to the eastern Channel.  相似文献   

2.
Seasonal observations on the nature and concentration of suspended particulate matter (SPM) are presented for a cross-section of the English Channel, between the Isle of Wight (UK) and Cotentin peninsula (France) i.e. the western boundary of the eastern English Channel. The highest concentrations of suspended material are found adjacent to the English coastline, whereas the offshore waters are associated with low concentrations. Seasonal variations in the concentration and nature of suspended material are identified, with highest concentrations in winter. At this time, the suspended particles are characterised generally by peaked grain size spectra and an enrichment in coarse silt particles; in summer, the distributions are generally flat. The diatom communities found within the suspended matter indicate that material resuspended in the coastal zone and the estuarine environments is transported offshore. SPM fluxes (based upon the observed SPM concentrations and the output from a 2-D hydrodynamic model) from the western Channel through the Wight–Cotentin Section, ranged between 2 and 71×106 t a−1 with a mean of around 20×106 t a−1 over the period of the observations (1994–1995). These fluxes are comparable to the order of magnitude and mean value reported as output through the Dover Strait. Therefore, it is possible that the eastern English Channel may be characterised as an area of fine-grained sediment ‘bypass'. This interpretation is corroborated by: (a) the absence of fine-grained sediment deposits over the area; and (b) correlation between the potential resuspension time of the fine particles and the seabed sediment distribution.  相似文献   

3.
Dissolved and particulate organic matter (DOM and POM) have been investigated along a transect between Cherbourg and the Isle of Wight. In addition, the relative contribution of different sources of POM have been assessed by the use of lipid biomarkers (e.g. fatty acids). Seawater samples were collected at two depths (subsurface and above the bottom) at five stations located on the transect during five cruises (from September 1994 to July 1995). Particulate organic carbon (POC) and dissolved organic carbon (DOC) concentrations vary between 30–530 μg l−1 and 0.5–2.7 mg l−1, respectively, for all the cruises. Fluxes of POM and DOM have been estimated at 0.6×1012 g yr−1 and 6.5×1012 g yr−1 of carbon, respectively. General fluxes of water and therefore of DOC and POC are oriented eastward. However, around the Isle of Wight a westward oriented flux exists due to a gyre located in the area. The major DOC and POC fluxes occur in the central part of the Channel where the water column is deepest. Seasonal variations of different sources of POM (algal, bacterial and terrigenous) have been examined for the five cruises. The fresh algal organic fraction is relatively important in September in coastal waters with a predominance of diatom species on the English side, whereas it has a low or undetectable contribution during winter months. The bacterial fraction generally varies in concert with the algal component. It is low during the winter period and more important in bloom or post-bloom conditions, as for example in May. Terrestrial organic matter is restricted to coastal areas in September, and is present at low levels in May and July. Nevertheless, in November and February, terrigenous inputs have been clearly identified for the whole transect even in central waters.  相似文献   

4.
Knowledge of long-term movements of water-masses in the English Channel has been substantially improved using hydrodynamic modelling coupled with radio-tracers studies; nevertheless, the precision of results so obtained is still largely dependent on measurement precision. New tools are now available to make more accurate determinations of radio-tracer distribution: (1) Repositioning of station locations at the same tide reference-time, giving a homogeneous spatial data set, coupled with the possibility of interpolating and quantifying the amounts of dissolved radioactivity flowing through the English Channel; (2) the first measurements of tritium (3H) in seawater on a large scale in the English Channel demonstrate that this fully conservative radionuclide is a clearly identifiable marker of industrial releases; (3) recent campaigns carried out during the FLUXMANCHE II CCE (1994) programme show the general distribution of dissolved radionuclides 137Cs, 134Cs, 60Co, 125Sb, 106Ru and 3H in the English Channel and the Irish Sea; and (4) the re-utilisation of data from previous campaigns (1983, 1986, 1988) provides indications, at any given location in the English Channel, about the average dilution and distribution of releases derived from the La Hague reprocessing plant. Excesses and losses of radionuclides are now quantified with respect to known source terms; estimates of losses are provided for non-conservative radionuclides, while an excess of 137Cs was observed in the English Channel during the period 1983–1994. This excess, which has the same order of magnitude as the quantities released from La Hague plant in the English Channel, could be explained by about 1% of the Sellafield reprocessing plant releases entering the Channel. These results confirm and give a more detailed picture of the previously known distribution of water masses in the English Channel. They lead to clear information about transit times and dilution at this scale, and provide directly comparable data for the validation of hydrodynamic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号