首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
特征点跟踪作为无人机对桥梁挠度进行视觉测量的关键技术,跟踪算法的速度和精度直接影响测量的实时性和有效性。本文首先通过加速稳健特征(SURF)匹配得到图像序列特征点的初步定位结果,然后使用相位相关法对特征点进行精确配准,并提出了一种基于无人机运动连续性的加速策略,用于桥梁自然特征点跟踪。利用无人机采集的4 K桥梁视频数据对本文算法进行测试,结果表明,本文算法对于桥梁自然特征点能够实现稳定跟踪,跟踪速度为25 FPS,跟踪精度达到亚像素级别,满足测量要求,能够为视觉测量提供技术支撑。  相似文献   

2.
针对飞行试验中机载设备安装位姿自动化标定难题,提出一种基于摄影测量技术的双目视觉测量系统。对系统中涉及的双目立体视觉测量技术、视觉测量系统标定技术、图像特征点自动化检测技术等关键技术进行深入研究,提出基于角锥体法与光束法相结合的标定方法。角锥体法为光束法提供计算参数的迭代初值,大大增强了迭代计算的收敛性与稳健性。在经典边缘提取算子的基础上,利用梯度幅值均值法对特征点中心图像坐标进行亚像素求取,同时研究编码点的设计原则与自动化检测方法。试验结果表明,该测量系统可对设备安装进行快速标定,整体精度达到0.05 mm,完全满足测试任务对精度的要求。  相似文献   

3.
针对非城区影像纹理特征缺乏、特征不明显、影像特征点提取困难和图像特征附近可能出现冗余特征点问题,本文提出一种基于高斯差分的改进Harris特征点提取算法。首先用高斯函数对图像进行卷积运算生成平滑图像,将原图像与平滑图像进行差分运算生成增强纹理特征的差分图像;然后基于Harris算法进行差分图像特征点提取,进行特征点局部窗口的非极大抑制,剔除冗余特征点,提高特征点提取精度。实验证明,本文算法可以改善纹理贫乏影像区的特征提取效果,有效删除冗余特征点,并提供质量较好的特征控制点。  相似文献   

4.
程传奇  郝向阳  李建胜  胡鹏  张旭 《测绘学报》2018,47(11):1446-1456
针对动态场景中运动路标点严重影响传统视觉自主定位算法精度,甚至产生定位失效的问题,提出一种顾及动态路标点的稳健高斯混合模型。在传统图优化视觉定位模型的基础上,增加“运动指数”描述图优化模型中路标点的运动概率,把传统图优化高斯模型增强为高斯混合模型,以约束运动路标点对图优化结果的影响;为增强模型对噪声的稳健性,采用方差膨胀模型约束残差方程;详细推导了该高斯混合模型的期望-最大化求解方法,把该问题转化为经典迭代最小二乘问题进行解算。仿真试验和真实数据试验表明:强动态场景中,提出的算法绝对精度指标和相对精度指标均优于传统优化算法;静态或弱动态场景中,提出的算法仍与传统优化算法定位性能相当。本文方法可有效减小场景中运动路标点对优化结果的影响,更适用于移动机器人的自主定位。  相似文献   

5.
地面起伏对成像及雷达景象匹配的影响   总被引:5,自引:0,他引:5  
叶勤  李启炎 《测绘学报》2002,31(Z1):50-55
景象匹配是飞行器导航与定位的一种重要手段,其中的雷达图像匹配由于具有全天候的特征而受到人们的重视.在分析了实时雷达图像成像方式的基础上,具体分析了地面高程起伏对雷达图像构像的影响,并进一步推导出在实时雷达图像上,图像像点位移与地面高程起伏的具体关系;以及为了保证一定的匹配定位精度,对于实飞地区地面起伏的定量要求.同时还对导航定位匹配所用的参考基准图受地面高程起伏的影响情况进行了定量的分析,并对理论情况和实际图像进行了计算分析与比较,最后得出在给定匹配精度的情况下,生成参考图时对成像区域内点之间的高差限制要求.  相似文献   

6.
一种视觉引导经纬仪自动测量方法   总被引:1,自引:0,他引:1  
文中将TM5100A经纬仪加载高精度摄像头构造视觉引导测量设备,标定十字丝中心点在像平面坐标系下的坐标,对经纬仪旋转水平角和垂直角与目标图像中心像素坐标之间的关系进行标定;摄像头采集目标图像并处理获取目标中心像素坐标,根据像素坐标与经纬仪旋转角关系计算经纬仪旋转角度,进而实现视觉引导经纬仪自动测量;对加载摄像头的经纬仪驱动误差进行测试,驱动误差允许的情况下测试并分析了视觉引导装置的点位测量精度、角度测量精度以及视觉引导准直测量精度,比人工测量精度高,符合工业测量的需求。  相似文献   

7.
在恢复场景信息和相机运动时,传统的SLAM算法是基于静态环境假设的。场景中的动态物体会降低算法的稳健性和最终的定位精度。本文提出将基于深度学习的图像语义分割技术与传统的视觉SLAM算法结合,以减少动态物体对定位结果的干扰。首先,构建有监督的卷积神经网络对输入图像中的动态物体进行分割,获得语义图像;然后,从原始图像中提取特征点,并根据语义图像剔除动态物体特征点,保留静态物体特征点;最后,利用静态物体特征点采用基于特征点的单目视觉SLAM算法对相机运动进行跟踪。在ApolloScape自动驾驶数据集上的试验表明,与传统方法相比,本文算法在动态场景中定位精度提升约17%。  相似文献   

8.
数字航摄相机的成功应用已成为摄影测量与遥感科学发展的新里程碑.目前,数字航摄相机普遍采用多相机拼接成像等技术,为数字遥感图像的几何定标与定位处理方法提出了新的问题和要求.二次成像航摄相机是一种能够集成胶片和数字优点为一体的新型航摄相机,其数字后背由多个带镜头的大面阵CCD成像系统组成,本文设计完成了大面阵CCD图像数据的实时获取与存储系统,并利用得到的定标靶面图像,对数字后背成像系统进行了几何定标,得到了CCD相机的内、外方位参数,为实现数字航摄相机系统的高精度定位与三维摄影测量奠定了基础.  相似文献   

9.
视觉同步定位与建图(visual simultaneous localization and mapping,VSLAM)技术是近年来机器人和计算机视觉领域的重点研究方向之一,但当前的主流算法主要面向静态环境,当场景中存在运动的物体时,算法的定位精度和稳定性会受到很大影响。为了解决上述问题,提出了一种惯性测量单元(inertialmeasurementunit,IMU)积分与YOLOv4语义分割结合的VSLAM前端动态特征点剔除算法,通过YOLOv4网络对图像进行语义分割,识别图像中有运动可能的物体;再将IMU积分与语义分割结合,对目标检测框内有运动可能的特征点进行重投影误差的解算,识别并剔除环境中运动的特征点。在TUM Visual-Inertial Dataset上验证该算法,结果表明,在包含运动物体的室内场景下,该算法可以有效剔除环境中的运动物体,显著提升SLAM系统的定位精度和稳定性。  相似文献   

10.
针对目前视觉定位方法中使用人工特征的限制,提出了一种基于全卷积编解码网络的视觉定位方法。该方法将场景点3D坐标映射到图像的BGR(blue-green-red)通道,建立了图像到场景的直接联系,并通过全卷积编解码网络学习图像与场景结构的关系。给出一张图像,网络可以预测其每个像素点对应的3D点在当前场景世界坐标系的坐标;然后结合RANSAC(random sample consensus)和PnP(perspective-n-point)算法求解位姿并优化,得到最终的相对位姿。在7-Scenes数据集上的实验结果表明本文方法可实现厘米级的高精度定位,并且相比其他基于深度学习的方法,该方法在保证精度的同时,模型尺寸更小。  相似文献   

11.
针对控制点获取较困难地区卫星影像定位精度不高的情况,对直线特征作为控制信息提升卫星影像定位精度进行了研究。以"像方直线上任意一点必然位于物方直线和投影中心所构成的平面"作为几何约束条件,通过对直线的参数化表示,建立了基于直线特征的共面模型;在该模型基础上,针对航天传感器的成像特点,分析建立了8标定参数的内方位元素模型和简化的外方位元素模型,最终构建了直线特征约束的卫星影像自检校平差模型。利用资源3号(ZY-3)卫星获取的华盛顿地区数据对构建的平差模型进行实验验证。结果表明,该模型能够解决缺乏地面控制点地区影像定位精度差的问题,可达到与常规自检校平差相同量级的精度。  相似文献   

12.
针对城市环境下影像空间定位精度低等问题,提出了一种在C/S架构下基于影像的移动平台空间自定位方法。首先对预采集的城市建筑物序列影像,利用最近邻距离比率(nearest neighbor distance ratio,NNDR)算法和归一化互相关匹配(normalized cross correlation,NCC)算法得到SIFT粗匹配,通过随机抽样一致(random sample consensus,RANSAC)算法对粗匹配点进行优化,通过精确解算基本矩阵 F 和投影矩阵 P ,建立建筑物三维点云模型,进而获得由影像特征点、像点坐标以及物方点坐标组成的物方特征库。其次以用户通过手机拍摄的影像作为定位影像,进行特征提取并与物方特征库影像匹配,获取对应物方点坐标。最后通过精确计算定位影像外方位元素,并在手机客户端中显示所拍照瞬间手机的空间位置,实现移动平台空间自定位。实验结果表明,该方法能够达到厘米级定位精度,可作为其他空间定位方法的有效补充。  相似文献   

13.
首先分析对比了国产小型IMU/GPS组合导航获取的小POS数据特点,因仪器精度有限引起的测量误差无法在成像过程中消除,相位误差导致了Mini SAR影像中部分目标成像出现方位向散焦、模糊,导致目标像点坐标出现误差。将传统定向参数计算方法用于Mini SAR单幅影像定位时,地面控制点数量、像点坐标、定向参数误差向量的限差、地形特征、DEM分辨率及POS数据精度等因素都会影响定位结果。当对定位精度要求不高时,多项式插值POS数据获取的天线相位中心的空间位置、速度比拟合更准确。  相似文献   

14.
万志龙  沈智毅 《测绘学院学报》2002,19(3):189-190,194
随着新型传感器的技术发展,特别是高分辨率商用卫星的运行,有理函数模型(Rational Funciton Model,RFM)在解决影像点定位和影像几何纠正方面的优越性体现得越来越明显。文中首先介绍RFM模型的原理和应用特点,然后结合典型的实际数据进行试验。结果表明通过适当的模型设计完全可以满足影像点定位和影像图生成的要求。  相似文献   

15.
研究基于点特征的匹配算法,结合现有影像匹配算子的优缺点,提出一种适用于低空遥感影像特征点的自动提取与匹配方法。首先在简化的高斯尺度空间中检测Harris角点,使该特征点具有尺度不变性;然后采用Forstner算子对关键点精确定位,精度达到子像素级;最后通过简化特征点描述符实现算法简化。在特征点匹配阶段,采用BBF-KD初匹配和二次精匹配提高匹配精度。以低空遥感影像为实验数据测评SIFT算法和文中方法在提取速度、匹配正确率、稳定性等方面的性能。实验结果表明,相对于传统的SIFT算法,处理影像清晰的低空遥感数据时本方法有更高精度和更快速度。  相似文献   

16.
参考地理数据的大比例尺影像无控定位   总被引:1,自引:0,他引:1  
针对传统摄影测量影像定位通过人工方式获取控制点导致的效率低、费用高等问题,本文提出了一种参考地理数据的大比例尺影像无控定位方法。首先利用经典SIFT算法从参考地理数据(DEM和DOM)提取带有控制信息的特征点;然后将通过POS获取的DSM配准到DEM地理坐标上,并利用形态学滤波对DSM进行处理,以提取并剔除建筑物、树木等高程剧烈变化区域的匹配点,降低校正误差;最后进行影像校正和定位。试验结果表明,本文方法能够满足大比例尺航空影像生产定位精度要求,具有高效生产、节约资源等优势。  相似文献   

17.
近年来,视觉定位由于定位精度高广泛应用于室内定位与导航。然而,室内环境复杂多变,视觉定位在很多场景下无法实现高精度定位,而且多数视觉定位算法耗时和计算复杂度高,不适用于智能手机。为实现基于智能手机的准确高效定位,本文提出了一种基于图像灰度直方图相似度计算的定位方法。该方法分为两个阶段:离线阶段和在线阶段。离线阶段在已知坐标的格网点分别利用智能手机采集图像,提取图像灰度直方图,建立图像灰度直方图图像特征库;在线阶段智能手机在待测点采集图像提取灰度直方图,然后与图像特征库进行相似度计算,选取相似度和最大值的格网作为概略位置,以相似度为权重采用加权均值法得到准确位置。将所提方法和KNN算法进行对比,试验结果表明,该方法的平均定位误差优于0.3 m,与KNN算法相比定位精度提高了40.7%,计算时间优于1.7 s。  相似文献   

18.
车载移动测图系统外方位元素标定方法   总被引:1,自引:1,他引:0  
全景相机因其360°大视场、旋转不变性等优点,逐渐被用于构建车载移动测图系统。标定是保证系统获取精确地理信息数据的重要前提。本文针对全景相机和定位定姿系统(POS)集成的车载移动测图系统,提出一种外方位元素标定的方法。首先,在实际场景中布设高精度已知控制点。其次,构建全景球面模型,将全景影像通过球面投影反变换投影到该球面上,从球面上选择控制点而不是直接从存在扭曲的全景影像上选择控制点并得到其球面坐标。在建立点的相关性之后,结合地理参考绝对定位方程和坐标变换,求得全景相机相对POS的平移与旋转参数。最后,采用本文提出的标定方法,分别选择北京航天城和天津滨海新区进行试验。试验表明,GPS信号良好时,点的绝对定位中误差可达平面10.3cm、高程16.5cm;GPS信号不好时,点的绝对定位中误差为平面35.4cm、高程54.8cm;在较短距离范围内(3km),距离量测相对误差最大为5cm左右,GPS信号对相对量测没有明显影响。  相似文献   

19.
球形全景成像可以克服透视成像视场角的局限,实现场景全覆盖的三维重建和量测。本文在普通影像位姿估计的EPnP(efficient perspective-n-point)算法上进行了改进和扩展,提出了一种稳健快速的球形全景影像位姿估计算法。首先,构建球形全景影像的投影模型,将EPnP算法的平面透视成像模型扩展到球面成像模型;然后,采用基于全景球心、像点、控制点共线条件方程的改进EPnP算法求解控制点的球形全景像空间坐标;最后,利用Horn绝对定位算法直接解算全景影像位姿。与球形全景影像位姿估计的后方交会算法的对比试验结果表明,本文提出的方法无须迭代求解,更为稳健快速,即使控制点数目较少也能达到高精度,基于非严格共中心拼接的全景相机,重投影误差可控制在3.00像素左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号