首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the vulnerability of ground water to contamination in the karstic Upper Floridan aquifer (UFA), age-dating tracers and selected anthropogenic and naturally occurring compounds were analyzed in multiple water samples from a public supply well (PSW) near Tampa, Florida. Samples also were collected from 28 monitoring wells in the UFA and the overlying surficial aquifer system (SAS) and intermediate confining unit located within the contributing recharge area to the PSW. Age tracer and geochemical data from the earlier stage of the study (2003 through 2005) were combined with new data (2006) on concentrations of sulfur hexafluoride (SF6), tritium (3H), and helium-3, which were consistent with binary mixtures of water for the PSW dominated by young water (less than 7 years). Water samples from the SAS also indicated mostly young water (less than 7 years); however, most water samples from monitoring wells in the UFA had lower SF6 and 3H concentrations than the PSW and SAS, indicating mixtures containing high proportions of older water (more than 60 years). Vulnerability of the PSW to contamination was indicated by predominantly young water and elevated nitrate-N and volatile organic compound concentrations that were similar to those in the SAS. Elevated arsenic (As) concentrations (3 to 19 μg/L) and higher As(V)/As(III) ratios in the PSW than in water from UFA monitoring wells indicate that oxic water from the SAS likely mobilizes As from pyrite in the UFA matrix. Young water found in the PSW also was present in UFA monitoring wells that tap a highly transmissive zone (43- to 53-m depth) in the UFA.  相似文献   

2.
Following many applications artificial neural networks (ANNs) have found in hydrology, a question has been rising for quantification of the output uncertainty. A pre‐optimized ANN simulated the hydraulic head change at two observation wells, having as input hydrological and meteorological parameters. In order to calculate confidence intervals (CI) for the ANN output two bootstrap methods were examined namely bootstrap percentile and BCa (Bias‐Corrected and accelerated). The actual coverage of the CI was compared to the theoretical coverage for different certainty levels as a means of examining the method's reliability. The results of this work support the idea that the bootstrap methods provide a simple tool for confidence interval computation of ANNs. Comparing the two methods, the percentile requires fewer calculations and yields narrower intervals with similar actual coverage to that of BCa. Overall, the actual coverage was proved lower than desired when not modeled points were present in the data subset. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
4.
The Edwards artesian aquifer occurs in cavernous limestones of Cretaceous (Albian) age within the Balcones fault zone in south-central Texas. The major recharge and discharge zones of the aquifer are contained within the upper reaches of three river systems: the Nueces, the San Antonio, and the Guadalupe. Within these watersheds, recharge dominates in the semiarid Nueces basin to the west while most discharge occurs farther east from wells in the subhumid San Antonio basin and from springs in the subhumid Guadalupe basin. This long-distance transfer of ground water (up to 240 km) is a result of several factors: depositional and early diagenetic history of the limestone host rock, geometry and magnitudes of fault displacement, and physiographic responses to faulting. The loci of greatest discharge from the aquifer occur in an area that was exposed subaerially with concomitant porosity enhancement due to dissolution of limestone during late Early Cretaceous time. This area also was subjected to the greatest fault displacement during Miocene time. Thus, faults and associated joints superimposed additional avenues for porosity and permeability development onto an area that already had considerable secondary porosity. Further determinants on aquifer properties resulted from late Tertiary and Quaternary drainage evolution in response to faulting along the Balcones trend. The strike of the fault zone lay at acute angles to the courses of the main trunk streams in the ancestral Guadalupe and San Antonio River systems, whereas in the Nueces basin the trend of the fault zone was normal to the courses of the main streams. Thus, as a fault-line scarp began to form in the eatern basins, scarp-normal streams were incised rapidly into northwest-trending canyons. These steep-gradient streams captured the eastward-flowing major streams in the easten watersheds. These pirate streams incised into the aquifer at the lowest topographic levels within the region because of: 1. The sudden acquisition of extensive catchment areas in a subhumid area; and 2. Steep stream gradients that reflected the larger fault displacement in the east. The low topographic points of discharge became the loci of major springs. Recharge is dominant in the Nueces basin mainly because streams cross permeable limestone units at higher topographic levels than in the San Antonio and Guadalupe basins. The topographic characteristics of the Nueces watershed resulted from a combination of diverse factors: lesser fault displacement, no major stream piracy, and less vigorous erosion because of a semiarid climate.  相似文献   

5.
This study focuses on the coupled transport of dissolved constituents and particulates, from their infiltration on a karst plateau to their discharge from a karst spring and their arrival at a well in an alluvial plain. Particulate markers were identified and the transport of solids was characterised in situ in porous and karstic media, based on particle size analyses, SEM, and traces. Transport from the sinkhole to the spring appeared to be dominated by flow through karst: particulate transport was apparently conservative between the two sites, and there was little difference in the overall character of the particle size distribution of the particulates infiltrating the sinkhole and of those discharging from the spring. Qualitatively, the mineralogy of the infiltrating and discharging material was similar, although at the spring an autochthonous contribution from the aquifer was noted (chalk particles eroded from the parent rock by weathering). In contrast, transport between the spring and the well appears to be affected by the overlying alluvium: particles in the water from the well, showed evidence of considerable size-sorting. Additionally, SEM images of the well samples showed the presence of particles originating from the overlying alluvial system; these particles were not found in samples from the sinkhole or the spring. The differences between the particulates discharging from the spring and the well indicate that the water pumped from the alluvial plain is coming from the karst aquifer via the very transmissive, complex geologic interface between the underlying chalk formation and the gravel at the base of the overlying alluvial system.  相似文献   

6.
Soliz JG  Acebo HL 《Ground water》2001,39(3):339-347
The aim of this study is to apply a parsimonious hydrologic model to the Itxina karstic aquifer that can predict changes in discharge resulting from variable inputs (recharge). The Itxina Aquifer was divided into four cells corresponding to different recharge areas. Each cell was treated as a tank to characterize the conditions within the cell. In the model, when the reservoir boundaries coincide with the position of the siphons, the signal simulated is sensitive to input pulses of the recharge. This supports the hypothesis that the siphons are the controlling mechanism in the flow system of the aquifer. The good agreement between predicted and measured discharges demonstrates the ability of the model to simulate the flow in the Itxina Aquifer. These results demonstrated that the hydraulic conductivity increases downstream within the aquifer. The hydraulic conductivities obtained by calibration varied between 4.2 x 10(-3) m/s upstream of the aquifer, 6.0 x 10(-2) m/s in the central region, and 9.5 x 10(-1) m/s in the lower region of the aquifer. These values seem reasonable because the underground features in the principal caves show that the density of caves increases downstream in the Itxina Aquifer. The simple representation of the system produced results comparable to traditional ground water models with fewer data requirements and calibration parameters.  相似文献   

7.
River discharge in mountainous regions of the world is often dominated by snowmelt, but base flows are sustained primarily by groundwater storage and discharge. Although numerous recent studies have focused on base-flow discharge in mountain systems, almost no work has explicitly investigated the role of karst groundwater in these systems across a full range of flow conditions. We directly measured groundwater discharge from 48 karst springs in the Kaweah River and its five forks in the Sierra Nevada mountains, California, United States. Relationships between spring and river discharge showed that karst aquifers and springs provide significant storage and delayed discharge to the river. Regression models showed that, of all potential seasonal groundwater storage compartments in the river basin, the area of karst (0.1–4.4%) present provides the best explanation of base-flow recession in each fork of the Kaweah River (directly measured contributions from karst springs ranged from 3.5 to 16% during high-flow to 20 to 65% during base-flow conditions). These results show that, even in settings where karst represents a small portion of basin area, it may play an over-sized role in seasonal storage and water resources in mountain systems. Karst aquifers are the single most important non-snow storage component in the Kaweah River basin, and likely provide similar water storage capacities and higher base flows in other mountain river systems with karst when compared with systems without karst.  相似文献   

8.
In lake sediments where terrestrial macrofossils are rare or absent, AMS radiocarbon dating of pollen concentrates may represent an important alternative solution for developing a robust and high resolution chronology suitable for Bayesian modelling of age-depth relationships. Here we report an application of the heavy liquid density separation approach (Vandergoes and Prior, Radiocarbon 45:479–492, 2003) to Holocene lake sediments from karstic Lake Sidi Ali, Morocco. In common with many karstic lakes, a significant lake 14C reservoir effect of 450–900 yr is apparent, evidenced by paired dates on terrestrial macrofossils and either aquatic (ostracod) or bulk sediment samples. AMS dating of 23 pollen concentrates alongside laboratory standards (bituminous coal, anthracite, IAEA C5 wood) was undertaken. Concentrates were prepared using a series of sodium polytungstate (SPT) solutions of progressively decreasing density (1.9–1.15 g/cm3) accompanied by microscopic analysis of the resulting residues to allow quantification of the terrestrial pollen content. The best fractions (typically precipitating at 1.4–1.2 g/cm3) yielded dateable samples of 0.5–5 mg (from sediment samples of ∼15 g), with C content typically ∼50% by weight. Terrestrial pollen purity ranges from 29% to 88% (μ = 67%), reflecting the challenge of isolating pollen grains from common aquatic algae, e.g. Pediastrum and Botryococcus. A Poisson-process Bayesian depositional model incorporating radiocarbon (pollen and macrofossil) and 210Pb/137Cs data is employed. As all pollen samples incorporate some non-terrestrial organic matter, we assume an exponential outlier distribution treating each pollen concentrate datum as an old outlier and terminus post quem. This approach yields strong data-model agreement, and differences between the prior and posterior age distributions are furthermore consistent with theoretical offsets anticipated for the known reservoir ages and sample-specific terrestrial content. This application of the pollen concentrate dating approach reinforces the importance of microscopic inspection of the residues during the separation and sieving stages. Sample specific differences mean that the pollen concentrate preparation cannot be reduced to a simplistic “black box” protocol, and dating and subsequent age-model development must be supported by detailed analysis of the microfossil content of the sediments.  相似文献   

9.
Isotope signatures in precipitation from the Global Network for Isotopes in Precipitation around the Mediterranean basin and literature data are compared with isotopic data from a large karstic aquifer in southeast Spain to explain the origin and type of the precipitation events dominating recharge. Analysis of the deuterium excess d at the scale of the Mediterranean basin and at the regional scale allows us to understand the isotopic context of the study area: Campo de Dalias and the Sierra de Gador (Almería province). The origin of precipitation can be determined from its d value. The d value changes as a function of the initial evaporation condition. It depends on the relative humidity and temperature during the evaporation producing the water vapour of the clouds. The water vapour, which dominates the study area, is generated in two areas: the Atlantic Ocean (d = 10‰) and the western Mediterranean basin (d = 15‰). With increasing precipitation volume, the western Mediterranean character dominates. These heavier storms contribute mainly to recharge, as illustrated by the d value of 13·6‰ in deep groundwater of the Campo de Dalias. Weighted d values increase with the volume of precipitation, giving a significant relationship for the southern and eastern coasts of the Iberian Peninsula. This selectivity of d to monthly precipitation was used to estimate the return period of precipitation leading to aquifer recharge at 0·9–4·9 years. Moderate rainfall, which occurs more frequently, still represents ~60–90% of the total precipitation. One of the challenges to meet ever‐growing water demands is to increase recharge from moderate events yielding intermediate quantities per event, but forming the bulk of the annual precipitation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Management of a coastal aquifer   总被引:1,自引:0,他引:1  
Bear J 《Ground water》2004,42(3):317-317
  相似文献   

11.
《水文科学杂志》2013,58(4):844-856
Abstract

The feasibility of aquifer storage and recovery (ASR) was tested in a deep aquifer near Koksijde, Belgium. To achieve this, oxic drinking water was injected into a deep aquifer (the Tienen Formation) that contains anoxic brackish water. The hydraulic properties of the aquifer were determined using a step-drawdown test. Chemical processes caused by the injection of the water were studied by two push—pull tests. The step-drawdown test was interpreted by means of an inverse numerical model, resulting in a transmissivity of 3.38 m2/d and a well loss coefficient of 0.00038 d2/m5. The push—pull tests identified mixing between the injection and pristine waters, and cation exchange, as the major processes determining the quality of the recovered water. Mobilization of DOC, aerobic respiration, denitrification and mobilization of phosphate were also observed.  相似文献   

12.
Asymmetric dipole-flow test in a fractured carbonate aquifer   总被引:1,自引:0,他引:1  
Halihan T  Zlotnik VA 《Ground water》2002,40(5):491-499
In this study, a new method-the asymmetric dipole-flow test-is proposed and tested for characterization of conductive properties and structure of fractured aquifers. Analytical solutions were developed and then used for interpretation of a modification of the dipole-flow test with a single packer at the Bissen Quarry test site (Wisconsin, USA). The asymmetric dipole-flow tests were conducted by packing a well at various elevations, and fluids were pumped from the upper section (chamber) of the well to the lower section (chamber). The head was then monitored at 11 observation points and in both sections of the well, and the conductivities of the well segments were determined. The tests at seven packer elevations in the well were rapid (less than one hour to reach steady state). The asymmetric dipole-flow test demonstrates the potential to quantify heterogeneities of a fractured aquifer and delineate the applicability of the continuum and discrete approaches for conceptualization of ground water flow.  相似文献   

13.
We have derived an analytical solution for two-region flow toward a well in a confined aquifer based on a linearization method. The two-region flow includes Izbash non-Darcian flow near the well and Darcian flow in the rest of the aquifer. The wellbore storage is also considered. The type curves in the non-Darcian and Darcian flow domains are obtained by a numerical Laplace inversion method incorporated in MATLAB programs. We have compared our results with the one-region Darcian flow model (Theis). Our solutions agree with those of Sen [Sen Z. Type curves for two-region well flow. J Hydr Eng 1988;114(12):1461–84] which were obtained using the Boltzmann transform at late times for fully turbulent flow, while some difference has been found at early and moderate times. We have defined a dimensionless non-Darcian hydraulic conductivity term which is shown to be a key parameter for analyzing the two-region flow. A smaller dimensionless non-Darcian hydraulic conductivity results in a larger drawdown in the non-Darcian flow region at late times. However, the dimensionless non-Darcian hydraulic conductivity does not affect the slope of the dimensionless drawdown versus the logarithmic dimensionless time in the non-Darcian flow region at late times. The dimensionless non-Darcian hydraulic conductivity does not affect the late time drawdown in the Darcian flow region.  相似文献   

14.
A procedure to simulate karstic aquifers is presented. It is based on a simulation of spring discharge using precipitation and, where necessary, temperature as input data. The karstic aquifer system is considered to be divided into three zones: the surface zone, the unsaturated zone (UZ) and the saturated zone (SZ). Each of these is described by a transfer function that determines the water supplied from the overlying zone. Water loss through evapotranspiration is calculated empirically and subtracted from the total precipitation in order to obtain the effective infiltration into the UZ. The transfer function characterizing the UZ can be expressed as a convolution function. The UZ acts as a buffer, delaying effective infiltration into the SZ. Water discharge from the SZ is described by the recession function of the spring, and this becomes the transfer function that characterizes the emergence of water from the SZ. The model permits the simulation of the influence of pumped abstractions from the system by a simple modification of the transfer functions involved. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Analysis of recharge-induced geochemical change in a contaminated aquifer   总被引:1,自引:0,他引:1  
Recharge events that deliver electron acceptors such as O2, NO3, SO4, and Fe3+ to anaerobic, contaminated aquifers are likely important for natural attenuation processes. However, the specific influence of recharge on (bio)geochemical processes in ground water systems is not well understood. The impact of a moderate-sized recharge event on ground water chemistry was evaluated at a shallow, sandy aquifer contaminated with waste fuels and chlorinated solvents. Multivariate statistical analyses coupled with three-dimensional visualization were used to analyze ground water chemistry data (including redox indicators, major ions, and physical parameters) to reveal associations between chemical parameters and to infer processes within the ground water plume. Factor analysis indicated that dominant chemical associations and their interpreted processes (anaerobic and aerobic microbial processes, mineral precipitation/dissolution, and temperature effects) did not change significantly after the spring recharge event of 2000. However, the relative importance of each of these processes within the plume changed. After the recharge event, the overall importance of aerobic processes increased from the fourth to the second most important factor, representing the variability within the data set. The anaerobic signatures became more complex, suggesting that zones with multiple terminal electron-accepting processes (TEAPs) likely occur in the same water mass. Three-dimensional visualization of well clusters showed that water samples with similar chemical associations occurred in distinct water masses within the aquifer. Water mass distinctions were not based on dominant TEAPs, suggesting that the recharge effects on TEAPs occurred primarily at the interface between infiltrating recharge water and the aquifer.  相似文献   

16.
Identifying connections in a fractured rock aquifer using ADFTs   总被引:1,自引:0,他引:1  
Halihan T  Love A  Sharp JM 《Ground water》2005,43(3):327-335
Fractured rock aquifers are difficult to characterize because of their extremely heterogeneous nature. Developing an understanding of fracture network hydraulic properties in these aquifers is difficult and time consuming, and field testing techniques for determining the location and connectivity of fractures in these aquifers are limited. In the Clare Valley, South Australia, well interference is an important issue for a major viticultural area that uses a fractured aquifer. Five fracture sets exist in the aquifer, all dipping > 25 degrees . In this setting, we evaluate the ability of steady-state asymmetric dipole-flow tests (ADFTs) to determine the connections between a test well and a set of piezometers. The procedure involves dividing a test well into two chambers using a single packer and pumping fluid from the upper chamber to the lower chamber. By conducting a series of tests at different packer elevations, an "input" signal is generated in fracture zones connected to the test well. By monitoring the "output" response of the hydraulic dipole field at piezometers, the connectivity of the fractures between the test well and piezometers can be determined. Results indicate the test well used in this study is connected in a complex three-dimensional geometry, with drawdown occurring above and below areas of potentiometric buildup. The ADFT method demonstrates that the aquifer evaluated in this study cannot be modeled effectively on the well scale using continuum flow models.  相似文献   

17.
Pumping test in a confined aquifer under tidal influence   总被引:2,自引:0,他引:2  
In a coastal environment, tide-induced head fluctuations can complicate the interpretation of drawdown data from pumping tests. For confined aquifers and sinusoidal tides, the superposition principle can be used to obtain a closed-form solution. After subtracting the net tidal effects, the drawdown data become amenable to the standard analyses. Numerical simulations have shown that the method is reliable when the distance of the monitoring well to the well does not exceed 10% of the distance between the well and the tidal boundary.  相似文献   

18.
Grundl T  Cape M 《Ground water》2006,44(4):518-527
Geochemical processes behind the occurrence of radium activities in excess of the U.S. EPA's drinking water limit of 5 pCi/L combined radium were investigated in a regional sandstone aquifer located in southeastern Wisconsin. Geochemical speciation modeling (PHREEQC 2.7) combined with a detailed understanding of the regional flow system provided by recent flow modeling efforts was used to determine that radium coprecipitation into barite controls radium activity in the unconfined portion of the aquifer. As the aquifer transitions from unconfined to confined conditions, radium levels rise and the water becomes more sulfate rich yet the aquifer remains at saturation with barite throughout. Calculations based on published distribution coefficients and the observed Ra:Ba atomic ratios indicate that barite contains approximately 12 mug/kg coprecipitated radium. Confined portions of the aquifer have high concentrations of sulfate, and barium concentrations become too low to be an effective control on radium activity. Additional, as yet undefined, controls on radium are operative in the downgradient, confined portion of the aquifer.  相似文献   

19.
Ten variables were examined using non parametric statistical tests (Mann-Whitney U and χ2) to evaluate the influence of these variables on ground water supply in the Centerville Quadrangle, Kentucky. Variables found to be significant were those directly related to lithology (wellhead stratigraphy and well-bottom stratigraphy) and those interpreted as being strongly influenced by lithology (well depth, wellhead elevation, and well-bottom elevation). In addition, wells judged adequate for water supply were closer to surface streams and bottomed closer to stream level than dry holes. Adequate wells were also closer to synclinal axes than dry holes. There was no significant difference between dry holes and adequate wells in their distance from sinkholes or regional structural position. Wells producing H2S-containing water differed from adequate wells only with regard to variables related to lithology but saline-water wells were more abundant in areas distant from surface streams as well as in unfavorable lithology.  相似文献   

20.
Abstract

This paper describes a study of groundwater flow in a coastal Miliolite limestone aquifer in western India. An examination of field information suggested that the transmissivity of the aquifer varies significantly between high and low groundwater heads. Pumping tests indicate that this is due to the development of major fissures in the upper part of the aquifer. A regional groundwater model with varying transmissivities is used to represent the field behaviour. The model is also used to examine the effect of artificial recharge on the alleviation of saline intrusion problems in the coastal area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号