首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The area of Serravalle, sited in the northern part of the town of Vittorio Veneto (TV), NE Italy, has been the target of a seismic microzonation campaign. 10 seismic stations have been deployed for a 7 months period to record in continuous mode. Three stations were installed on bedrock outcrops and seven on sedimentary sites with variable cover thickness. Spectral analyses have been performed on the collected data-set using the Generalized Inversion Technique (GIT, e.g. Andrews, 1986). In particular, spectral ratios have been calculated for each station relatively to the average of the three reference, bedrock sites. The spectral ratios provide quantitative estimates of the seismic motion amplifications which occur in each of the monitored sites. Two sites show high values of amplification, 5 times larger than signal amplitude at the reference sites, in correspondence of well discernible peak frequencies of 5 Hz. Results for the other stations show smaller amounts of site amplification spreading over a broad range of frequencies. Sites where the highest amplifications were recorded all lie on the left bank of the Meschio River and in areas farther away from its outlet into the plain correlating with the presence of thick layers of Quaternary deposits.  相似文献   

2.
The site amplification is estimated at five seismic stations of the Latur region using the horizontal to vertical spectral ratios of 33 aftershocks of the main Killari earthquake of September 29, 1993 (UTC). Spectral amplifications, ranging from a factor of 2–6 are found to vary with frequency at different places. Significant amplification is found at four sites within the Latur region, at Basavakalyan, Kasgi, Killari, and Mudgad Eakoji villages. Our results show a positive correlation between the site amplification and the damage pattern in area. The pattern and the nature of the site amplification estimated in the present study corroborates also with the analytical models and the borehole data indicating alternating layers of unconsolidated sediments and basaltic rocks.  相似文献   

3.
场地土对基岩峰值加速度放大效应分析   总被引:1,自引:2,他引:1  
通过实际土层地震反应结果的统计分析和强震加速度观测结果的对比, 讨论了不同场地条件对基岩峰值加速度的放大效应及其特点。该分析可为地震动参数区划图编制和地震安全性评价中场地效应的估计、由基岩地震动估算场地地面地震动提供参考。  相似文献   

4.
A major portion of the southern part of the Indian subcontinent is classified as a stable continental region. However, a few segments in this region are punctuated by rifts and shear zones that are seismically active. The Godavari rift that sutures the eastern Dharwar and the Bastar cratons is one such region, prone to seismic hazard. Estimation of the sedimentary thickness in these seismically active regions assumes importance since locales of thick and soft sediments are vulnerable to destruction due to surface waves generated by earthquakes. In the present study, data from five broadband seismological stations are utilized to estimate the average sedimentary thickness of the Godavari region using the difference in travel times of the direct S and converted Sp phases from local earthquakes. The thickness of sediments varies between 0.32 and 4.32 km. Also, the site-specific response in terms of the fundamental resonance frequency and the corresponding amplifications are estimated using the well-established Nakamura technique. The predominant frequencies are in the range of 1.3–4.61 Hz, and the amplifications are higher (>1.5) for the stations inside the Godavari basin. Both the thickness and amplification values clearly indicate that the sediments tend to get thicker toward the center of the basin, in good agreement with the geological distribution of the sedimentary units.  相似文献   

5.
The seismic events recorded at two accelerographs installed at Sellano (central Italy) during the 1997–1998 Umbria seismic sequence, one on detritic material, at the historical centre, and the other one on rock, about 200 m distant, were analysed in terms of spectral amplification of the historical centre site. Epicentres were mainly concentrated in the north and south-east directions of Sellano area. The SH wave component average amplifications were evaluated from the smoothed Fourier spectral ratios of the recordings on soil and rock sites, along the two main epicentral lines. Similar amplifications resulted, with two main peaks in the frequency range of 3–5 Hz, corresponding to the eigenfrequencies of the damaged buildings. Shear velocities of the shallowest 30 m of soils were obtained by FTAN measurements along refraction seismic spreadings, and utilized to compute spectral amplification of soil station to rock station along the geological cross sections. A good agreement was found between observed Fourier spectral ratios and the computed 2D amplification modelling, which explains the damage level of the historical buildings beside the degraded conditions of brick masonry.  相似文献   

6.
Any earthquake event is associated with a rupture mechanism at the source, propagation of seismic waves through underlying rock and finally these waves travel through the soil layers to the particular site of interest. The bedrock motion is significantly modified at the ground surface due to the presence of local soil layers above the bedrock beneath the site of interest. The estimation of the amplifications in ground response due to the local soil sites is a complex problem to the designers and the problem is more important for mega cities like Mumbai in India, where huge population may get affected due to devastations of earthquake. In the present study, the effect of local soil sites in modifying ground response is studied by performing one dimensional equivalent-linear ground response analysis for some of the typical Mumbai soil sites. Field borelog data of some typical sites in Mumbai city viz. Mangalwadi site, Walkeswar site, BJ Marg near Pandhari Chawl site are considered in this study. The ground responses are observed for range of input motions and the results are presented in terms of surface acceleration time history, ratio of shear stress to vertical effective stress versus time, acceleration response spectrum, Fourier amplitude ratio versus frequency etc. The typical amplifications of ground accelerations considering four strong ground motions with wide variation of low to high MHA, frequency contents and durations are obtained. Results show that MHA, bracketed duration, frequency content have significant effects on the amplification of seismic accelerations for typical 2001 Bhuj motion. The peak ground acceleration amplification factors are found to be about 2.50 for Mangalwadi site, 2.60 for Walkeswar site and 3.45 for BJ Marg site using 2001 Bhuj input motion. The response spectrum along various soil layers are obtained which will be useful for designers for earthquake resistant design of geotechnical structures in Mumbai for similar sites in the absence of site specific data.  相似文献   

7.
Ambient seismic noise measurements were conducted inside the Holweide Hospital (Cologne) for checking whether its frequencies of vibration fall into the range where soil amplification is expected. If this is the case, damage might increase in case of an earthquake due to an amplified structural response of the building. Two different techniques were used: the ratio between the horizontal and vertical components of the spectra recorded at stations located inside the building and the ratio between the corresponding components of the spectra recorded simultaneously inside the building and at a reference station placed outside. While the former method might be preferred because of less equipment involved, the latter has the advantage of producing more stable results and deleting automatically the influence of the sedimentary cover, which might obscure some eigenfrequencies of vibration of the building. An independently performed finite-element analysis of the hospital showed a good correlation between measured and calculated eigenmodes.  相似文献   

8.
Andrei Bala 《Natural Hazards》2014,72(3):1429-1445
Bucharest, the capital city of Romania, with more than 2 million inhabitants, is considered as a natural disaster hotspot by a recent global study of the World Bank and the Columbia University (Dilley M et al. Natural disaster hotspots: a global risk analysis. International Bank for Reconstruction and Development/The World Bank and Columbia University, Washington, DC in 2005). Therefore, it is classified as the second metropolis in Europe, after Istanbul, subjected to important losses in the case of a destructive Vrancea earthquake with moment magnitude greater than seven. Four major earthquakes with moment magnitudes between 6.9 and 7.7 hit Bucharest in the last 68 years. The most recent destructive earthquake on March 4, 1977, with a moment magnitude of 7.4, caused about 1,500 casualties in the capital alone. All disastrous intermediate-depth earthquakes are generated within a small epicentral area—the Vrancea seismogenic region—about 150 km northeast of Bucharest. Thick unconsolidated sedimentary layers below Bucharest amplify the arriving seismic waves causing severe destruction. Ten 50-m-deep boreholes are drilled in the metropolitan area of Bucharest in order to obtain a unique, homogeneous dataset of seismic, soil-mechanic and elasto-dynamic parameters. Cores for dynamic tests were extracted, and vertical seismic profiles were performed to obtain an updated site amplification model related to earthquakes waves. The boreholes are placed near former or existing seismic station sites to allow a direct comparison and calibration of the borehole data with previous seismological measurements. A database containing geological characteristics for each sedimentary layer, geotechnical parameters measured on rock samples, P- and S wave velocity and density for each sedimentary layer is set up, as a result of previous papers with this subject. Direct data obtained by the geophysical methods in the new boreholes drilled in Bucharest City, as well as from laboratory measurements, are used as input data in the program SHAKE2000. Results are obtained in the form of spectral acceleration response, and peak acceleration in depth is computed for every site in which in situ measurements were performed. The acceleration response spectra correspond to the shear-wave amplifications due to the models of sedimentary layers down to (a) 50 m depth; (b) 70 m depth; and (c) 100 m depth. A comparison of the acceleration response spectra obtained by modelling at surface with a real signal recorded at surface is obtained in three sites, as test sites for the three depths considered, in order to calibrate the results obtained by equivalent linear method of the seismic site response.  相似文献   

9.
Avcılar is the suburb of Istanbul that was most heavily damaged during the August 17, 1999 Mw 7.4 Izmit earthquake. Strong ground motion caused fatalities and damage in Avcılar despite being 90 km from the epicenter. We deployed five portable seismograph stations equipped with Reftek 24-bit recorders and L4C-3D seismometers for 2 months, in order to understand why the local site response was different from elsewhere in Istanbul. A reference station was placed on a hard rock site, and the remaining four stations were placed on other geological units, in areas that had experienced varying levels of damage. We calculated frequency-dependent ground amplification curves by taking the ratios of the spectra at soft and hard rock sites. We obtained similar site response curves for most earthquakes at each site in the frequency range of 0.3–1.6 Hz, and observed no significant site amplification beyond 2.0 Hz at any site. The overall characteristics of the recorded S-waveforms and our modeling of the calculated site amplification curves are consistent with amplification as a result of trapping of seismic energy within a 100–150 m thick, low-velocity subsurface layer. We also review the applicability of microtremor measurements to estimate local site effects at Avcılar. For these data, we used ratios of spectra of horizontal to vertical components to obtain each site response. These results are compared with standard spectral ratios. These microtremor measurements provide consistent estimates of the amplification at most sites at the higher end of the frequency band, namely above 1 Hz. The results from both methods indeed agree well in this part of the frequency band. However, the microtremor method fails to detect amplification at lower frequencies, namely <1.0 Hz.  相似文献   

10.
The site amplification functions at 48 sites of NCR have been estimated in this study using the waveforms of locally recorded 23 earthquakes. Due to the absence of a suitable reference site in the region, the widely used horizontal-to-vertical spectral ratio (HVSR) technique has been used for this purpose. The maps showing the spatial distribution of predominant frequencies and the site amplifications at different frequencies corresponding to the natural frequencies of the different-storey buildings have been presented. The predominant frequencies in general are found to be in the range 2.5–7.5 Hz with an average of 4.4 Hz for the region having older alluvium sediments and in the range 1.1–6.4 Hz with an average of 3.3 Hz for the region with the younger alluvium deposits. The average value of the site amplifications for the frequency band 3.0–10.0 Hz is in the range 2.0–5.3 for the sites with significant soil cover, while the spectral amplification corresponding to the predominant frequency varies from 2.5 to 7.5 at most of the sites. The spectral amplification level lies in the range 2.0–3.0 for the sites with less or no sediment cover. The spectral amplification levels presented for the different-storey buildings may be used for the mitigation of seismic hazard in the region. The estimated site amplification functions may be used in the simulation of the site-specific strong ground motions and therefore useful for the evaluation of seismic hazard of a region.  相似文献   

11.
Site response in and around Delhi is studied using digital seismograms recorded by a thirteen-station VSAT-based 24-bit digital Delhi telemetry network of the India Meteorological Department. Nine local (M l ≥ 2.3) and nine regional (M l ≥ 3.9) earthquakes are selected for the estimation of site amplification factor using the classical standard spectral ratio for regional events (Ridge Delhi Observatory being the reference station), normalized standard spectral ratio for local events, horizontal-to-vertical spectral ratio or receiver function and the generalized inversion techniques in the frequency range of 0.5 to 7.5 Hz. Site response curves at all the thirteen stations exhibit station to station variation of the site amplification factor reflecting the changes in geologic/geotectonic/soil conditions. A comparison of the site response values obtained by the generalized inversion with those computed using receiver function technique shows a large scatter even though the pattern of the curves remain more or less similar. However, the site effects computed by generalized inversion and standard spectral ratio exhibit a good 1:1 correspondence. The peaks yielded by all the methods have been observed to occur at the same frequencies. It is evident that the softer fluvial deposits of the newer alluvium of the east Yamuna sector show steeper site amplification gradient at lower frequencies, while the greater Delhi experiences moderate site amplification. The variation of site response corroborates the abrupt changes in intensity from one location to another due to local site condition.  相似文献   

12.

The definition of the Richter Ml magnitude scale is in terms of seismic wave horizontal components recorded on Wood‐Anderson seismographs. However, at many seismograph sites only the vertical component is available, and at sedimentary sites horizontal components are usually significantly amplified, causing complications in the assignment of a magnitude to an earthquake. Because each earthquake can be recorded at a different subset of sites, each subset having a different combination of site amplifications, the assignment of a magnitude is dependent upon the seismograph site combination that records a particular earthquake. Although there is some amplification of the vertical component at sedimentary foundation sites, it is shown that a reduced spread of values of Ml magnitude, consistent with low amplification (bedrock) site magnitudes, can be achieved using the vertical component to compute the magnitude and adding 0.2 to adjust to the Ml magnitude scale (defined in terms of the horizontal components). This presupposes that the sites used by Richter were on bedrock; however, even if this is incorrect, it appears to be a necessary precondition for the world‐wide unification of the Richter scale along with defining the true gain of Wood‐Anderson seismographs rather than accepting the design gain of 2800. Site corrections would be smaller than those established using the horizontal components. Taking into account the use of only the vertical component in the calculation of Ml and including the 0.2 adjustment to the equivalent horizontal component derived magnitude, the expression for the calculation of magnitudes in the Victoria region becomes:

Ml = logAz ‐ logSz + 0.9 + logR + 0.0056Re‐0.0013R

where Az is the equivalent Wood‐Anderson seismograph displacement amplitude, Sz is the site amplification (vertical component) and R is the hypocentral distance.  相似文献   

13.
The seismic ground motion of a test area in the eastern district of Naples is computed with a hybrid technique based on the mode summation and the finite difference methods. This technique allows us the realistic modelling of source and propagation effects, including local soil conditions. In the modelling, we consider the 1980 Irpinia earthquake, a good example of strong shaking for the area of Naples, which is located about 90 km from the epicenter.The detailed geological setting is reconstructed from a large number of drillings. The sub-soil is mainly formed by alluvial (ash, stratified sand and peat) and pyroclastic materials overlying a pyroclastic rock (yellow neapolitan tuff), representing the neapolitan bedrock. The detailed information available on mechanical properties of the sub-soil and its geometry warrants the application of the sophisticated hybrid technique.As expected, the sedimentary cover causes an increase of the signal's amplitudes and duration. If thin peat layers are present, the amplification effects are reduced, and the peak ground accelerations are similar to those observed for the bedrock model. This can be explained by the backscattering of wave energy at such layers, that tend to seismically decouple the upper from the lower part of the structure.For SH-waves, the influence of the variations of the S-wave velocities on the spectral amplification is studied, by considering locally measured velocities and values determined from near-by down-hole measurements. The comparison between the computed spectral amplifications confirms the key role of an accurate determination of the seismic velocities of the different layers.The comparison performed between a realistic 2-D seismic response and a standard 1-D response, based on the vertical propagation of waves in a plane layered structure, shows considerable difference, from which it is evident that serious caution must be taken in the modelling of expected ground motion at a specific site.  相似文献   

14.
In April 2006, Dubai Municipality established a broadband seismological network in Dubai Emirate, United Arab Emirates (UAE). This network was the first seismic network in UAE and consists of four remote seismic stations to observe local and regional seismic activity that may have an effect on Dubai Emirate and the surrounding areas. The network exchanges real-time data with the National Center of Meteorology and Seismology in Abu Dhabi, the Earthquake Monitoring Center in Oman and imports in real-time data from few Global Seismic Network stations, which increases the aperture of the network. In April 2012, Dubai Municipality installed an additional five free-field strong motion stations inside the urban area to estimate and publish real-time ShakeMaps for public and decision makers. Although the local seismic activity from April 2006 to June 2013 reflects low seismic activity with the Emirate, it indicates active tectonics in the relatively aseismic northern Oman Mountains region. A few inland clusters of micro-to-small earthquakes have been identified with the new network. A clear cluster of small-to-moderate earthquakes took place in the eastern part of UAE to the east of Masafi, while two clusters of micro-to-small earthquakes took place at Wadi Nazwa and northern Huwaylat. Focal mechanisms of few well recorded earthquakes in this region indicate normal faulting, generally trending NE in parallel to the transition shear zone between the collision at Zagros and the subduction at the Makran zone.  相似文献   

15.
Deterministic seismic microzonation of Kolkata city   总被引:1,自引:0,他引:1  
This paper presents the deterministic seismic microzonation of densely populated Kolkata city situated on the world’s largest delta island with very soft and thick soil deposit in the surficial layers. A fourth-order accurate staggered-grid finite-difference algorithm for SH-wave propagation simulation in visco-elastic medium is used for the linear computation of ground motion amplifications in sedimentary deposit. Different maps such as for fundamental frequency (F 0), peak ground acceleration (PGA), peak ground velocity, and peak ground displacement are developed for variety of end-users communities, including structural and geotechnical engineers for performance-based designs, building officials, emergency managers, land-use planners, private businesses, and the general public. The scenario of simulated amplification factors in the different frequency bands revealed that the Kolkata city is very much prone to severe damage even during a moderate earthquake and very selective damage may occur at some of the localities during local and distant earthquakes. The deterministically predicted PGA at bedrock level is 0.0844 g and the maximum PGA predicted at the free surface is 0.6 g in Kolkata city due to maximum credible earthquake (M w = 5.4) associated with Eocene Hinge Zone at a depth of 36 km. The seismic microzonation of Kolkata city reveals that the Nager Bazar and Nimtala areas are the safest regions with earthquake point of view.  相似文献   

16.
In recent years, there has been a growing awareness of the importance of local site effects in earthquake damage. A number of studies of recent destructive earthquakes have illustrated the relative contribution of enhanced ground shaking due to unconsolidated sediment layers.
Among the different methods used to estimate local site response, the spectral ratio of shaking at a sedimentary site with respect to a bedrock reference site, has been successfuly applied in different geological environments. In this study, a technique recently proposed by Nakamura (1989) is used to evaluate site response using spectral ratios of horizontal vs. vertical components of earthquake recordings from a temporary ocean bottom seismograph (OBS) network in the northern North Sea and a permanent OBS at Oseberg oil field. Comparison with results obtained from the standard spectral ratios, indicate that the method is applicable also to subsea conditions, and the estimates obtained in this study indicate similar amplification factors to those obtained previously from analytical techniques. The ambient noise data on the other hand, gave unstable results, probably due to different noise characteristics in the marine environment. The results obtained on the earthquake data, however, provide an encouraging alternative to previously used analytical techniques for estimating local site response.  相似文献   

17.
A one-dimensional velocity model and station corrections for the Middle-Durance fault zone (south-eastern France) were computed by inverting P-wave arrival times recorded on a local seismic network of 8 stations. A total of 93 local events with a minimum of 6 P-phases, RMS 0.4 s and a maximum gap of 220° were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn from our findings. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of south-eastern France.  相似文献   

18.
川西北地区深切峡谷发育,地震扰动频繁。峡谷内高陡岩质斜坡在强震扰动下,通常会发生震裂松弛,进而导致失稳,因此研究其强震响应意义重大。2019年四川长宁Ms6.0级地震触发了布置在石棉县城南桠河两岸的3台强震监测仪器,通过对捕捉到的强震数据进行连续小波变换之后,获取了其时频信息。分析结果表明:(1)S波在频域上分为两种成分,其主频值分别为3.5 Hz和1.1 Hz附近;(2)山脊处的地震动放大效应主要体现为S波相对高频成分上能量的增加而低频部分则无显著变化;(3)覆盖层场地自振频率与S波低频成分主频相近,二者产生共振,导致S波低频放大与高频衰减效应;(4)地震动响应具有极强的方向性,水平向地震动放大效应比垂直向更为显著。  相似文献   

19.
An earthquake of magnitude 6.9 (M w) occurred in the Sikkim region of India on September 18, 2011. This earthquake is recorded on strong-motion network in Uttarakhand Himalaya located about 900 km away from the epicenter of this earthquake. In this paper acceleration record from six far-field stations has been used to compute the source parameters of this earthquake. The acceleration spectra of ground motion at these far-field stations are strongly affected by both local site effects and near-site anelastic attenuation. In the present work the spectrum of S-phase recorded at these far-field stations has been corrected for anelastic attenuation at both source and site and the site amplification terms. Site amplifications at different stations and near-site shear wave attenuation factor have been computed by the technique of inversion of acceleration spectra given by Joshi et al. (Pure Appl Geophys 169:1821–1845, 2012a). For estimation of site amplification and shear wave quality factor [Q β (f)] at the recording sites, ten local events recorded at various stations between July 2011 and December 2011 have been used. The obtained source spectrum from acceleration records is compared with the theoretical source spectrum defined by Brune (J Geophys Res 76:5002, 1970) at each station for both horizontal components of the records. Iterative forward modeling of theoretical source spectrum gives the average estimate of seismic moment (M o), source radius (r o) and stress drop (Δσ) as (3.2 ± 0.8) × 1026 dyne cm, 13.3 ± 0.8 km and 59.2 ± 8.8 bars, respectively, for the Sikkim earthquake of September 18, 2011.  相似文献   

20.
Chennai city suffered moderate tremors during the 2001 Bhuj and Pondicherry earthquakes and the 2004 Sumatra earthquake. After the Bhuj earthquake, Indian Standard IS: 1893 was revised and Chennai city was upgraded from zone II to zone III which leads to a substantial increase of the design ground motion parameters. Therefore, a comprehensive study is carried out to assess the seismic hazard of Chennai city based on a deterministic approach. The seismicity and seismotectonic details within a 100 km radius of the study area have been considered. The one-dimensional ground response analysis was carried out for 38 representative sites by the equivalent linear method using the SHAKE91 program to estimate the ground motion parameters considering the local site effects. The shear wave velocity profile was inferred from the corrected blow counts and it was verified with the Multichannel Analysis of Surface Wave (MASW) test performed for a representative site. The seismic hazard is represented in terms of characteristic site period and Spectral Acceleration Ratio (SAR) contours for the entire city. It is found that structures with low natural period undergo significant amplification mostly in the central and southern parts of Chennai city due to the presence of deep soil sites with clayey or sandy deposits and the remaining parts undergo marginal amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号