共查询到19条相似文献,搜索用时 57 毫秒
1.
The Summer Monsoon Onset over the Tropical Eastern Indian Ocean: The Earliest Onset Process of the Asian Summer Monsoon 总被引:9,自引:2,他引:9
The onset process of the tropical eastern Indian Ocean (TEIO) summer monsoon (TEIOSM) and its relationship with the cross-equatorial flows are investigated via climatological analysis. Climatologically, results indicate that the earliest onset process of the Asian summer monsoon occurs over the TEIO at pentad 22 (April 15–20). Unlike the abrupt onset of the South China Sea (SCS) summer monsoon, the TEIOSM onset process displays a stepwise advance. Moreover, a close relationship between the TEIOSM development and the northward push of the cross-equatorial flows over 80–90E is revealed. A difference vorticity center, together with the counterpart over the southern Indian Ocean, constitutes a pair of difference cyclonic vortices, which strengthens the southwesterly wind over the TEIO and the northerly wind to the west of the Indian Peninsula from the end of March to late May. Therefore, the occurrence of the southwesterly wind over the TEIO is earlier than its counterpart over the tropical western Indian Ocean, and the cross-equatorial flows emerge firstly over the TEIO rather than over the Somali area. The former increases in intensity during its northward propagation, which provides a precondition for the TEIOSM onset and its northward advance. 相似文献
2.
The Webster and Yang monsoon index (WYI)-the zonal wind shear between 850 and 200 hPa was calculated and modified on the basis of NCEP/NCAR reanalysis data. After analyzing the circulation and divergence fields of 150-100 and 200 hPa, however, we found that the 200-hPa level could not reflect the real change of the upper-tropospheric circulation of Asian summer monsoon, especially the characteristics and variation of the tropical easterly jet which is the most important feature of the upper-tropospheric circulation. The zonal wind shear U850-U(150 100) is much larger than U850-U200, and thus it can reflect the strength of monsoon more appropriately. In addition, divergence is the largest at 150 hPa rather than 200 hPa, so 150 hPa in the upper-troposphere can reflect the coupling of the monsoon system. Therefore, WYI is redefined as DHI, i.e., IDH=U850* - U(150 100)*, which is able to characterize the variability of not only the intensity of the center of zonal wind shear in Asia, but also the monsoon system in the upper and lower troposphere. DHI is superior to WYI in featuring the long-term variation of Asian summer monsoon as it indicates there is obvious interdecadal variation in the Asian summer monsoon and the climate abrupt change occurred in 1980. The Asian summer monsoon was stronger before 1980 and it weakened after then due to the weakening of the easterly in the layer of 150-100 hPa, while easterly at 200 hPa did not weaken significantly. After the climate jump year in general, easterly in the upper troposphere weakened in Asia, indicating the weakening of summer monsoon; the land-sea pressure difference and thermal difference reduced, resulting in the weakening of monsoon; the corresponding upper divergence as well as the water vapor transport decreased in Indian Peninsula, central Indo-China Peninsula, North China, and Northeast China, indicating the weakening of summer monsoon as well. The difference between NCEP/NCAR and ERA-40 reanalysis data in studying the intensity and long-term variation of Asian summer monsoon is also compared in the end for reference. 相似文献
3.
亚洲季风环流在20世纪70年代末之后的减弱(英文) 总被引:73,自引:0,他引:73
全球大气环流自20世纪70年代末之后的转变可以很清楚地在大气温度、风场等的变化上得到发现。子波分析的结果证实这次转变的时间尺度在20年以上。本文的研究着重揭示:在对流层中层,亚洲中纬度区域的转变趋势同全球平均的转变趋势相反;更重要的是,在这次转变之后亚洲和非洲的季风环流变弱了,同时热带东太平洋区的贸易风环流也变弱了。而在降水的变化中也可以发现这次转变。 相似文献
4.
An Index Measuring the Interannual Variation of the East Asian Summer Monsoon ——The EAP Index 总被引:48,自引:9,他引:48
HUANG Gang 《大气科学进展》2004,21(1):41-52
Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over ther Northern Hemisphere, an index measuring the strength of the East Asian summer monsoon, i.e., the so-called EAP index, is defined in this paper. From the analyses of observed data, it is clearly shown that the EAP index defined in this study can well describe the interannual variability of summer rainfall and surface air temperature in East Asia, especially in the Yangtze River valley and the Huaihe River valley, Korea,and Japan. Moreover, this index can also reflect the interannual variability of the East Asian summer monsoon system including the monsoon horizontal circulation and the vertical-meridional circulation cell over East Asia. From the composite analyses of climate and monsoon circulation anomalies for high EAP index and for low EAP index, respectively, it is well demonstrated that the EAP index proposed in this study can well measure the strength of the East Asian summer monsoon. 相似文献
5.
The role of various mountains in the Asian monsoon system is investigated by
AGCM simulations with different mountains. The comparison of the simulation
with Asian mountains (MAsia run) with the simulation without mountains (NM
run) reveals that the presence of the Asian mountains results in a stronger
South Asian summer monsoon (SASM), characterized by enhanced
lower-tropospheric westerly winds, upper-tropospheric easterly winds, and
stronger water vapor convergence. In East Asia, the southerly winds and
water vapor convergence are significantly strengthened in association with
the intensified zonal pressure gradient between the East Asian continent and
the Pacific Ocean. Both the dynamical and thermodynamic forcing of the
Tibetan Plateau play important role in strengthening the Asian summer
monsoon. In winter, the presence of Asian mountains significantly
strengthens the continental high, which leads to a stronger Asian winter
monsoon. The presence of African--Arabian mountains helps to intensify the
exchange of mass between the Southern Hemisphere and Northern Hemisphere by
strengthening the cross equatorial flows in the lower and upper troposphere
over East Africa.
Asian mountains also play a crucial role in the seasonal evolution of Asian
monsoons. In comparison with the NM run, the earlier onset and later
withdrawal of lower-tropospheric westerly winds can be found over South Asia
in the MAsia run, indicating a longer SASM period. The African--Arabian
mountains also moderately contribute to the seasonal variation of the South
Asian monsoon. In East Asia, the clear south-to-north march of the southerly
winds and subtropical rainfall starts to occur in early summer when the
effects of Asian mountains are considered. 相似文献
6.
A number of AGCM simulations were performed by including various land--sea
distributions (LSDs), such as meridional LSDs, zonal LSDs, tropical
large-scale LSDs, and subcontinental-scale LSDs, to identify their effects
on the Asian monsoon. In seven meridional LSD experiments with the
continent/ocean located to the north/south of a certain latitude, the LSDs
remain identical except the southern coastline is varied from 40o to
4oN in intervals of 5.6o. In the experiments with the coastline
located to the north of 21oN, no monsoon can be found in the subtropical
zone. In contrast, a summer monsoon is simulated when the continent extends
to the south of 21oN. Meanwhile, the earlier onset and stronger
intensity of the tropical summer monsoon are simulated with the southward
extension of the tropical continent. The effects of zonal LSDs were
investigated by including the Pacific and Atlantic Ocean into the model
based on the meridional LSD run with the coastline located at 21oN. The
results indicate that the presence of a mid-latitude zonal LSD induces a
strong zonal pressure gradient between the continent and ocean, which in
turn results in the formation of an East Asian subtropical monsoon. The
comparison of simulations with and without the Indian Peninsula and
Indo-China Peninsula reveals that the presence of two peninsulas remarkably
strengthens the southwesterly winds over South Asia due to the tropical
asymmetric heating between the tropical land and sea. The tropical zonal LSD
plays a crucial role in the formation of cumulus convection. 相似文献
7.
In this paper,a relatively systematic climatological research on the onset of the Asian tropical summer monsoon(ATSM)was carried out.Based on a unified index of the ATSM onset,the advance of the whole ATSM was newly made and then the view that the ATSM firstly breaks out over the tropical eastern Indian Ocean and the middle and southern Indo-China Peninsula was further documented,which was in the 26th pentad(about May 10),then over the South China Sea(SCS)in the 28th pentad.It seems that the ATSM onset over the two regions belongs to the different stages of the same monsoon system.Then,the onset mechanism of ATSM was further investigated by the comprehensive analysis on the land-sea thermodynamic contrast,intraseasonal oscillation,and so on,and the several key factors which influence the ATSM onset were put forward.Based on these results,a possible climatological schematic map that the ATSM firstly breaks out over the tropical eastern Indian Ocean,the Indo-China Peninsula,and the SCS was also presented, namely seasonal evolution of the atmospheric circulation was the background of the monsoon onset;the enhancement and northward advance of the convections,the sensible heating and latent heating over the Indo-China Peninsula and its neighboring areas,the dramatic deepening of the India-Burma trough,and the westerly warm advection over the eastern Tibetan Plateau were the major driving forces of the summer monsoon onset,which made the meridional gradient of the temperature firstly reverse over this region and ascending motion develop.Then the tropical monsoon and precipitation rapidly developed and enhanced. The phase-lock of the 30-60-day and 10-20-day low frequency oscillations originated from different sources was another triggering factor for the summer monsoon onset.It was just the common effect of these factors that induced the ATSM earliest onset over this region. 相似文献
8.
The seasonal variations of the Asian monsoon were explored by applying the atmospheric general circulation model R42L9 that was developed recently at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS). The 20-yr (1979-1998) simulation was done using the prescribed 20-yr monthly SST and sea-ice data as required by Atmospheric Model Intercomparison Project (AMIP)Ⅱ in the model. The monthly precipitation and monsoon circulations were analyzed and compared with the observations to validate the model‘s performance in simulating the climatological mean and seasonal variations of the Asian monsoon. The results show that the model can capture the main features of the spatial distribution and the temporal evolution of precipitation in the Indian and East Asian monsoon areas. The model also reproduced the basic patterns of monsoon circulation. However, some biases exis tin this model. The simulation of the heating over the Tibetan Plateau in summer was too strong. The overestimated heating caused a stronger East Asian monsoon and a weaker Indian monsoon than the observations. In the circulation fields, the South Asia high was stronger and located over the Tibetan Plateau. The western Pacific subtropical high was extended westward, which is in accordance with the observational results when the heating over the Tibetan Plateau is stronger. Consequently, the simulated rainfall around this area and in northwest China was heavier than in observations, but in the Indian monsoon area and west Pacific the rainfall was somewhat deficient. 相似文献
9.
The impacts of the seasonal and interannual SST variability in the East Asia coastal regions (EACRSST) on the East Asian summer monsoon (EASM) have been examined using a regional climate model (PδRCM9) in this paper. The simulation results show that the correlation between the EACRSST and the EASM is strengthened after the mid-1970s and also the variability of the EACRSST forcing becomes much more important to the EASM interannual variability after the mid-1970s. The impacts of the EACRSST on the summer precipitation over each sub-region in the EASM region become weak gradually from south to north, and the temporal evolution features of the summer precipitation differences over North and Northeast China agree well with those of the index of EASM (IEASM) differences.
The mechanism analyses show that different EACRSST forcings result in the differences of sensible and latent heat flux exchanges at the air-sea interface, which alter the heating rate of the atmosphere. The heating rate differences induce low level air temperature differences over East Asia, resulting in the differences of the land-sea thermal contrast (LSTC) which lead to 850 hPa geopotential height changes. When the 850 hPa geopotential height increases over the East Asian continent and decreases over the coast of East China and the adjacent oceans during the weakening period of weakens consequently. On the contrary, the EASM enhances during the strengthening period of the LSTC. 相似文献
The mechanism analyses show that different EACRSST forcings result in the differences of sensible and latent heat flux exchanges at the air-sea interface, which alter the heating rate of the atmosphere. The heating rate differences induce low level air temperature differences over East Asia, resulting in the differences of the land-sea thermal contrast (LSTC) which lead to 850 hPa geopotential height changes. When the 850 hPa geopotential height increases over the East Asian continent and decreases over the coast of East China and the adjacent oceans during the weakening period of weakens consequently. On the contrary, the EASM enhances during the strengthening period of the LSTC. 相似文献
10.
DING Yihui LI Chongyin HE Jinhai CHEN Longxun GAN Zijun QIAN Yongfu YAN Junyue WANG Dongxiao SHI Ping FANG Wendong XU Jianping LI Li 《Acta Meteorologica Sinica》2006,20(2):159-190
The SCSMEX is a joint atmospheric and oceanic experiment by international efforts, aiming at studying the onset, maintenance, and variability of the South China Sea (SCS) summer monsoon, thus improving the monsoon prediction in Southeast and East Asian regions. The field experiment carried out in May-August 1998 was fully successful, with a large amount of meteorological and oceanographic data acquired that have been used in four dimensional data assimilations by several countries, in order to improve their numerical simulations and prediction. These datasets are also widely used in the follow-up SCS and East Asian monsoon study. The present paper has summarized the main research results obtained by Chinese meteorologists which cover six aspects: (1) onset processes and mechanism of the SCS summer monsoon; (2) development of convection and mesoscale convective systems (MCSs) during the onset phase and their interaction with large-scale circulation; (3) low-frequency oscillation and teleconnection effect; (4) measurements of surface fluxes over the SCS and their relationship with the monsoon activity; (5) oceanic thermodynamic structures, circulation, and mesoscale eddies in the SCS during the summer monsoon and their relationship with ENSO events; and (6) numerical simulations of the SCS and East Asian monsoon. 相似文献
11.
Response of the Asian summer monsoon to weakening of Atlantic thermohaline circulation 总被引:2,自引:1,他引:2
Various paleoclimate records have shown that the Asian monsoon was punctuated by numerous suborbital time-scale events, and these events were coeval with those that happened in the North Atlantic. This study investigates the Asian summer monsoon responses to the Atlantic Ocean forcing by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the cold North Atlantic and warm South Atlantic induced by the weakened Atlantic thermohaline circulation (THC) due to the freshwater flux lead to significantly suppressed Asian summer monsoon. The authors analyzed the detailed processes of the Atlantic Ocean forcing on the Asian summer monsoon, and found that the atmospheric teleconnection in the eastern and central North Pacific and the atmosphere-ocean interaction in the tropical North Pacific play the most crucial role. Enhanced precipitation in the subtropical North Pacific extends the effects of Atlantic Ocean forcing from the eastern Pacific into the western Pacific, and the atmosphere-ocean interaction in the tropical Pacific and Indian Ocean intensifies the circulation and precipitation anomalies in the Pacific and East Asia. 相似文献
12.
大气热源年代际异常与20世纪70年代末期东亚夏季风年代际减弱 总被引:1,自引:1,他引:1
利用1958-2001年ERA-40再分析资料计算大气热源,统计分析了亚洲季风区及其邻近海域大气热源年代际变异的典型模态;利用线性斜压干模式,模拟了夏季大气对大气热源年代际异常的响应,揭示了大气热源年代际异常与1970s末期东亚夏季风年代际减弱的关系。结果表明:近50 a来亚洲及其邻近海域夏季整层大气热源变异主要表现为年代际变化特征,其年代际位相转换发生在1970s中后期,这与东亚夏季风年代际减弱的时间一致;菲律宾附近海域和中国西南地区是与东亚夏季风年代际减弱有直接联系的两个热源异常关键区;东亚夏季风年代际减弱最直接地表现为这两个关键区热源异常的共同作用,而赤道中东太平洋、赤道印度洋大气热源增强则通过大气遥响应机制影响菲律宾附近海域低层大气环流异常对东亚夏季风变异起相反的贡献。 相似文献
13.
东亚夏季风环流对气溶胶分布的影响 总被引:1,自引:1,他引:1
用2001—2012年逐月的MODIS-TERRA卫星观测气溶胶光学厚度(AOD)资料和NCEP/NCAR风场资料,分析了5—8月东亚地区AOD的时-空分布特征,研究东亚夏季风环流对气溶胶时-空分布的影响。主要结论如下:5—8月的中国东部及邻近海洋上AOD有着显著的季节演变特征,尤其是32.5 °N附近的AOD高值区,其强度和范围在5—8月逐渐增强然后又减弱。东亚夏季风通过环流输送作用对各地的AOD产生了不同程度的影响,使中国南部AOD减少,而华北和东北地区AOD增加。在强、弱季风年背景下,7月观测的AOD差异与环流输送作用差异的分布特征有着一定的相似性,体现出东亚夏季风年际变化对气溶胶分布的影响。在东亚夏季风演变的不同阶段,季风环流对气溶胶输送大部分情况下,可解释局地气溶胶变化10%~20%的方差。 相似文献
14.
东亚冬夏季风关系在1970s末的年代际转变 总被引:1,自引:0,他引:1
利用NCEP/NCAR和Hadley中心的大气与海洋再分析资料,选取具有代表性的东亚冬、夏季风指数,采用滑动相关和线性回归等方法,主要讨论了受ENSO影响的东亚冬季风分量和后期夏季风之间关系的年代际变化,并分析了二者关系发生变化的原因。结果表明:在1965—1979年,受ENSO影响的冬季风与后期夏季风强度的对应关系并不明显。在1980—2004年,受ENSO影响的冬季风强,对应后期的夏季风偏弱,弱冬季风对应的后期夏季风偏强。当受ENSO影响的冬季风较强时,冬季在对流层低层西北太平洋出现了异常气旋并可以维持到次年夏季,低纬地区位势高度偏低,削弱了西太平洋副热带高压,异常气旋西部的偏北气流阻碍了西南风的北进,导致夏季风偏弱。海表温度异常在1980年前后春、夏季不同的分布型可以解释环流在不同时段内的差异。 相似文献
15.
利用NCEP/NCAR再分析资料、Hadley中心海温资料及CMAP降水资料等,通过亚澳季风联合指数挑选异常年份,对东亚夏季风和澳洲冬季风强度反相变化特征进行研究。结果表明,当东亚夏季风偏强、澳洲冬季风偏弱时,南北半球中低纬地区都出现了复杂的异常环流系统。在热带地区对流层低层,西北太平洋为异常反气旋式环流系统所控制,与南太平洋赤道辐合带的异常反气旋环流在赤道地区发生耦合,形成赤道异常东风,而在南北印度洋上则存在两个异常气旋式环流系统。在这两对异常环流之间的海洋性大陆地区,出现赤道以南为反气旋环流而赤道以北为气旋式环流。在东亚季风区,东南沿海的东侧海洋上存在反气旋异常,中国东南地区受异常反气旋西南侧的东南风影响。此外,澳洲北部受异常西风影响。这就形成了东亚夏季风偏强、澳洲冬季风偏弱的情形,从而东亚夏季风和澳洲冬季风活动出现了强弱互补的变化特征。当东亚夏季风偏弱、澳洲冬季风偏强时,南北半球的环流特征则出现与上述相反的环流特征。总体而言,当东亚夏季风偏强、澳洲冬季风偏弱时,东亚—澳洲季风区在南北半球呈现出不同的气候异常分布特征,即北半球降水北少南多、气温北高南低,南半球降水西多东少、气温西高东低。 相似文献
16.
大气热源和大地形对夏季印度季风和东亚季风环流形成作用的数值模拟 总被引:6,自引:1,他引:6
本文利用一个σ坐标的三层初始方程热带球圈数值模式,以全球夏季平均纬向风场为初始场,研究地形的纯动力作用和不同地区的大气热源、冷汇对亚洲夏季两支独立的季风环流系统形成的影响,针对它们对季风环流的主要成员如越赤道气流、季风槽、青藏高压等的相对重要性设计并进行了—系列试验,东亚季风环流和印度季风环流系统的成员被很好地模拟出来。 相似文献
17.
18.
Interference of the East Asian Winter Monsoon in the Impact of ENSO on the East Asian Summer Monsoon in Decaying Phases简 总被引:2,自引:0,他引:2
The variability of the East Asian winter monsoon (EAWM) can be divided into an ENSO-related part (EAWMEN) and an ENSO-unrelated part (EAWMres).The influence of EAWMres on the ENSO-East Asian summer monsoon (EASM) relationship in the decaying stages of ENSO is investigated in the present study.To achieve this,ENSO is divided into four groups based on the EAWMres:(1) weak EAWMres-E1Ni(n)o (WEAWMres-EN); (2) strong EAWMres-E1Ni(n)o (SEAWMresEN); (3) weak EAWMres-La Ni(n)a (WEAWMres-LN); (4) strong EAWMres-La Ni(n)a (SEAWMres-LN).Composite results demonstrate that the EAWMres may enhance the atmospheric responses over East Asia to ENSO for WEAWMres-EN and SEAWMres-LN.The corresponding low-level anticyclonic (cyclonic) anomalies over the western North Pacific (WNP) associated with El Ni(n)o (La Ni(n)a) tend to be strong.Importantly,this feature may persist into the following summer,causing abundant rainfall in northern China for WEAWMres-EN cases and in southwestern China for SEAWMres-LN cases.In contrast,for the SEAWMres-EN and WEAWMres-LN groups,the EAWMres tends to weaken the atmospheric circulation anomalies associated with E1 Ni(n)o or La Ni(n)a.In these cases,the anomalous WNP anticyclone or cyclone tend to be reduced and confined to lower latitudes,which results in deficient summer rainfall in northern China for SEAWMres-EN and in southwestern China for WEAWMres-LN.Further study suggests that anomalous EAWMres may have an effect on the extra-tropical sea surface temperature anomaly,which persists into the ensuing summer and may interfere with the influences of ENSO. 相似文献
19.
东亚夏季风异常活动的空间多模态特征 总被引:1,自引:0,他引:1
利用ERA40再分析资料,采用相关、合成、自然正交函数展开(EOF分析)等方法,探讨了东亚地区夏季风活动的多空间模态特征及其与大气环流异常的可能联系。结果表明:1)东亚夏季风活动存在3种差异明显的典型空间模态。第一模态反映了夏季风活动在我国东部沿海及以东洋面与其以西地区的反相变化,主要体现了夏季风活动主体位置的东西变动;第二模态反映了自我国华南,经长江中下游、山东半岛、渤海湾至我国东北及朝鲜半岛一带夏季风活动的一致性变化,体现了东亚夏季风活动的整体强弱;第三模态主要反映了夏季风活动在中国以东洋面、朝鲜半岛、东北亚一带与我国华南地区的反相变化,主要体现了夏季风活动主体位置的南北移动。2)东亚夏季风活动的多空间模态对应的大气环流异常存在显著差异。东亚夏季风第一空间模态与亚洲南部区域以及鄂霍次克海上空的SLP呈负相关,而与北极极区、贝加尔湖地区及日本以东洋面的SLP呈正相关;而与同期500hPa高度场的相关分布主要表现为自极地经鄂霍次克海至日本以东洋面的“+-+”的波列分布特征。第二模态与SLP和500hPa高度场的相关分布具有非常相似的空间分布形势,均表现为东北、朝鲜半岛、日本海一带与菲律宾洋面、鄂霍次克海地区的反位相分布,自低纬向高纬呈现“+-+”的波列分布特征。第三模态与SLP和500hPa高度场的相关分布,主要表现为菲律宾附近洋面、日本及以东洋面、贝加尔湖到亚洲北部的负正相间的分布形势。 相似文献