首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the results of our hydrodynamic calculations of radial pulsations in helium stars with masses 1 MM ≤ 10 M, luminosity-to-mass ratios 1 × 103L/ML/M ≤ 2 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for mass fractions of helium Y=0.98 and heavy elements Z=0.02. We show that the lower boundary of the pulsation-instability region corresponds to L/M ~ 103L/M and that the instability region for L/M ? 5 × 103L/M is bounded by effective temperatures Teff ? 3 × 104 K. As the luminosity rises, the instability boundary moves into the left part of the Hertzsprung-Russell diagram and radial pulsations can arise in stars with effective temperatures Teff ? 105 K at L/M ? 7 × 103L/M. The velocity amplitude for the outer boundary of the hydrodynamic model increases with L/M and lies within the range 200 ? ΔU ? 700 km s?1 for the models under consideration. The periodic shock waves that accompany radial pulsations cause a significant change of the gas-density distribution in the stellar atmosphere, which is described by a dynamic scale height comparable to the stellar radius. The dynamic instability boundary that corresponds to the separation of the outer stellar atmospheric layers at a superparabolic velocity is roughly determined by a luminosity-to-mass ratio L/M ~ 3 × 104L/M.  相似文献   

2.
We have performed hydrodynamic calculations of the radial pulsations of helium stars with masses 10MM ≤ 50M, luminosity-to-mass ratios 5 × 103L/ML/M ≤ 2.5 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for helium and heavy-element mass fractions of Y=0.98 and Z=0.02, respectively. We show that the high-temperature boundary of the instability region for radial pulsations at L/M ? 104L/M extends to Teff≈105 K. The amplitude of the velocity variations for outer layers is several hundred km s?1, while the brightness variations in the B band of the UBV photometric system are within the range from several hundredths to half a magnitude. At constant luminosity-to-mass ratio, the radial pulsation period is determined only by the effective temperature of the star. In the ranges of luminosity-to-mass ratios 104L/ML/M ≤ 2 × 104L/M and effective temperatures 5 × 104 K ≤ Teff ≤ 9 × 104 K, the periods of the radial modes are within 6 min ?Π?103 min.  相似文献   

3.
Based on observations of SN 1999em, we determined the physical parameters of this supernova using hydrodynamic calculations including nonequilibrium radiative transfer. Taking the distance to SN 1999em estimated by the expanding photosphere method (EPM) to be D = 7.5 Mpc, we found the parameters of the presupernova: radius R = 450R, mass M = 15M, and explosion energy E = 7 × 1050 erg. For the distance D = 12 Mpc determined from Cepheids, R, M, and E must be increased to the following values: R = 1000R, M = 18M, and E = 1051 erg. We show that one cannot restrict oneself to using the simple analytical formulas relating the supernova and presupernova parameters to obtain reliable parameters for type-IIP presupernovae.  相似文献   

4.
Stellar evolution calculations were carried out from the main sequence to the final stage of the asymptotic giant branch for stars with initial masses 1 MMZAMS ≤ 2 M and metallicity Z = 0.01. Selected models of evolutionary sequences were used as initial conditions for solution of the equations of radiation hydrodynamics and time–dependent convection describing radial stellar pulsations. The study was aimed to construct the hydrodynamic models of Mira–type stars that show the secular decrease in the pulsation period Π commenced in 1970th at Π = 315 day. We show that such a condition for the period change is satisfied with evolutionary sequences 1 MMZAMS ≤ 1.2 M and the best agreement with observations is obtained for MZAMS = 1.2 M. The pulsation period reduction is due to both the stellar radius decrease during the thermal pulse of the helium burning shell and mode switch from the fundamental mode to the first overtone. Theoretical estimates of the fundament parameters of the star at the onset of pulsation period reduction are as follows: the mass is M = 0.93 M, the luminosity is L = 4080 L, and the radius is R = 220 R. The mode switch occurs 35 years after the onset of period reduction.  相似文献   

5.
An analytic solution has been found in the Roche approximation for the axially symmetric structure of a hydrostatically equilibrium atmosphere of a neutron star produced by collapse. A hydrodynamic (quasione-dimensional) model for the collapse of a rotating iron core in a massive star gives rise to a heterogeneous rotating protoneutron star with an extended atmosphere composed of matter from the outer part of the iron core with differential rotation (Imshennik and Nadyozhin, 1992). The equation of state of a completely degenerate iron gas with an arbitrary degree of relativity is taken for the atmospheric matter. We construct a family of toroidal model atmospheres with total masses M≈ 0.1?2M and total angular momenta J≈(1?5.5)×49 erg s, which are acceptable for the outer part of the collapsed iron core, in accordance with the hydrodynamic model, as a function of constant parameters ω0 and r 0 of the specified differential rotation law Ω=ω0exp[?(rsinθ)2/r 0 2 ] in spherical coordinates. The assumed rotation law is also qualitatively consistent with the hydrodynamic model for the collapse of an iron core.  相似文献   

6.
Excitation of radial oscillations in population I (X = 0.7, Z = 0.02) red supergiants is investigated using the solution of the equations of radiation hydrodynamics and turbulent convection. The core helium burning stars with masses 8M M ≤ 20M and effective temperatures T eff < 4000 K are shown to be unstable against radial pulsations in the fundamental mode. The oscillation periods range between 45 and 1180 days. The pulsational instability is due to the κ-mechanism in the hydrogen and heliumionization zones. Radial pulsations of stars with mass M < 15M are strictly periodic with the light amplitude ΔM bol ≤ 0?5. The pulsation amplitude increases with increasing stellar mass and for M > 15M the maximum expansion velocity of outer layers is as high as one third of the escape velocity. The mean radii of outer Lagrangean mass zones increase due to nonlinear oscillations by ≤30% in comparison with the initial equilibrium. The approximate method (with uncertainty of a factor of 1.5) to evaluate the mass of the pulsating red supergiant with the known period of radial oscillations is proposed. The approximation of the pulsation constant Q as a function of the mass-to-radius ratio is given. Masses of seven galactic red supergiants are evaluated using the period-mean density relation.  相似文献   

7.
Three three-component (bulge, disk, halo) model Galactic gravitational potentials differing by the expression for the dark matter halo are considered. The central (bulge) and disk components are described by the Miyamoto–Nagai expressions. The Allen–Santillán (I), Wilkinson–Evans (II), and Navarro–Frenk–White (III) models are used to describe the halo. A set of present-day observational data in the range of Galactocentric distances R from 0 to 200 kpc is used to refine the parameters of thesemodels. For the Allen–Santillán model, a dimensionless coefficient γ has been included as a sought-for parameter for the first time. In the traditional and modified versions, γ = 2.0 and 6.3, respectively. Both versions are considered in this paper. The model rotation curves have been fitted to the observed velocities by taking into account the constraints on the local matter density ρ = 0.1 M pc?3 and the force K z =1.1/2πG = 77 M pc?2 acting perpendicularly to the Galactic plane. The Galactic mass within a sphere of radius 50 kpc, M G (R ≤ 50 kpc) ≈ (0.41 ± 0.12) × 1012 M , is shown to satisfy all three models. The differences between the models become increasingly significant with increasing radius R. In model I, the Galactic mass within a sphere of radius 200 kpc at γ = 2.0 turns out to be greatest among the models considered, M G (R ≤ 200 kpc) = (1.45 ±0.30)× 1012 M , M G (R ≤ 200 kpc) = (1.29± 0.14)× 1012 M at γ = 6.3, and the smallest value has been found in model II, M G (R ≤ 200 kpc) = (0.61 ± 0.12) × 1012 M . In our view, model III is the best one among those considered, because it ensures the smallest residual between the data and the constructed model rotation curve provided that the constraints on the local parameters hold with a high accuracy. Here, the Galactic mass is M G (R ≤ 200 kpc) = (0.75 ± 0.19) × 1012 M . A comparative analysis with the models by Irrgang et al. (2013), including those using the integration of orbits for the two globular clusters NGC 104 and NGC 1851 as an example, has been performed. The third model is shown to have subjected to a significant improvement.  相似文献   

8.
Evolutionary tracks from the zero age main sequence to the asymptotic giant branch were computed for stars with initial masses 2 M M ZAMS ≤ 5 M and metallicity Z = 0.02. Some models of evolutionary sequences were used as initial conditions for equations of radiation hydrodynamics and turbulent convection describing radial stellar pulsations. The early asymptotic giant branch stars are shown to pulsate in the fundamental mode with periods 30 day ? Π ? 400day. The rate of period change gradually increases as the star evolves but is too small to be detected (Π?/Π < 10?5 yr?1). Pulsation properties of thermally pulsing AGB stars are investigated on time intervals comprising 17 thermal pulses for evolutionary sequences with initial masses M ZAMS = 2 M and 3 M and 6 thermal pulses for M ZAMS = 4 M and 5 M . Stars with initial masses M ZAMS ≤ 3 M pulsate either in the fundamental mode or in the first overtone, whereas more massive red giants (M ZAMS ≥ 4 M ) pulsate in the fundamental mode with periods Π ? 103 day. Most rapid pulsation period change with rate ?0.02 yr?1 ? Π?/Π ? ?0.01 yr?1 occurs during decrease of the surface luminosity after the maximum of the luminosity in the helium shell source. The rate of subsequent increase of the period is Π?/Π ? 5 × 10?3 yr?1.  相似文献   

9.
We consider an equation of state that leads to a first-order phase transition from the nucleon state to the quark state with a transition parameter λ>3/2 (λ=ρQ/(ρN+P0/c2)) in superdense nuclear matter. Our calculations of integrated parameters for superdense stars using this equation of state show that on the stable branch of the dependence of stellar mass on central pressure dM/dPc>0) in the range of low masses, a new local maximum with Mmax=0.082 and R=1251 km appears after the formation of a toothlike kink (M=0.08M, R=205 km) attributable to quark production. For such a star, the mass and radius of the quark core are Mcore=0.005M and Rcore=1.73 km, respectively. In the model under consideration, mass accretion can result in two successive transitions to a quark-core neutron star with energy release similar to a supernova explosion: initially, a low-mass star with a quark core is formed; the subsequent accretion leads to configurations with a radius of ~1000 km; and, finally, the second catastrophic restructuring gives rise to a star with a radius of ~100 km.  相似文献   

10.
We performed hydrodynamic computations of nonlinear stellar pulsations of population I stars at the evolutionary stages of the ascending red giant branch and the following luminosity drop due to the core helium flash. Red giants populating this region of the Hertzsprung–Russel diagram were found to be the fundamental mode pulsators. The pulsation period is the largest at the tip of the red giant branch and for stars with initial masses from 1.1 M to 1.9 M ranges from ∏ ≈ 254 day to ∏ ≈ 33 day , respectively. The rate of period change during the core helium flash is comparable with rates of secular period change in Mira type variables during the thermal pulse in the helium shell source. The period change rate is largest (∏?/∏ ≈ ?10?2 yr?1) in stars with initial mass M ZAMS = 1.1 M and decreases to ∏?/∏ ~ ?10?3 yr?1 for stars of the evolutionary sequence M ZAMS = 1.9 M . Theoretical light curves of red giants pulsating with periods ∏ > 200 day show the presence of the secondary maximum similar to that observed in many Miras.  相似文献   

11.
This paper is a continuation of our recent paper devoted to refining the parameters of threecomponent (bulge, disk, halo) axisymmetric model Galactic gravitational potentials differing by the expression for the dark matter halo using the velocities of distant objects. In all models the bulge and disk potentials are described by the Miyamoto–Nagai expressions. In our previous paper we used the Allen–Santillán (I), Wilkinson–Evans (II), and Navarro–Frenk–White (III) models to describe the halo. In this paper we use a spherical logarithmic Binney potential (model IV), a Plummer sphere (model V), and a Hernquist potential (model VI) to describe the halo. A set of present-day observational data in the range of Galactocentric distances R from 0 to 200 kpc is used to refine the parameters of the listed models, which are employed most commonly at present. The model rotation curves are fitted to the observed velocities by taking into account the constraints on the local matter density ρ= 0.1 M pc?3 and the force K z=1.1/2πG = 77M pc?2 acting perpendicularly to the Galactic plane. The Galactic mass within spheres of radius 50 and 200 kpc are shown to be, respectively, M 50 = (0.409 ± 0.020) × 1012 M and M 200 = (1.395 ± 0.082) × 1012 M in model IV, M 50 = (0.417 ± 0.034) × 1012 M and M 200 = (0.469 ± 0.038) × 1012 M in model V, and M 50 = (0.417 ± 0.032) × 1012 M and M 200 = (0.641 ± 0.049)× 1012 M in model VI. Model VI looks best among the three models considered here from the viewpoint of the achieved accuracy of fitting the model rotation curves to the measurements. This model is close to the Navarro–Frenk–White model III refined and considered best in our previous paper, which is shown using the integration of the orbits of two globular clusters, Lynga 7 and NGC 5053, as an example.  相似文献   

12.
A series of highly accurate photoelectric observations of the eclipsing binary MZ Lac was obtained with a 48-cm AZT-14 reflector at the Tien-Shan High-Altitude Station of the Sternberg Astronomical Institute from 1985 to 2004 to study its apsidal motion. We constructed a consistent system of physical and geometrical parameters of the components and the binary’s orbit: we determined their masses (M1 = 1.50M, M2 = 1.29M), radii (R1 = 1.86R, R2 = 1.35R), luminosities (L1 = 0.79L, L2 = 0.45L), surface gravities (logg1 = 4.06, logg2 = 4.27), age (t = 1.9 × 109 yr), and the distance to the binary (d = 510 pc). The binary exhibits apsidal motion with the period Uobs = 480 ± 40 yr, while its theoretically expected value is Uth = 450 ± 40 yr. Spectroscopic studies of MZ Lac and calculations of the absolute parameters of the components are required to test our conclusions.  相似文献   

13.
This paper reports the results of spectroscopic observations of UUCas obtained with the highresolution (R = 15 000) fiber-fed echelle spectrometer of the 1.2-m telescope of Kourovka Astronomical Observatory of Ural Federal University. The radial velocities of the secondary, more massive and fainter component are measured for the first time. The component mass ratio is found to be q = M 1/M 2 = 0.54. The component masses, M 1 = 9.5M and M 2 = 17.7M , and the radius of the or bit, A = 52.7R , are computed for the published orbital inclination of i ~ 69°. Evidence is presented for a disk surrounding the more massive component and a common expanding envelope.  相似文献   

14.
Based on data from the Two-Micrometer All-Sky Survey (2MASS), we analyzed the infrared properties of 451 Local-Volume galaxies at distances D ≤ 10 Mpc. We determined the K-band luminosity function of the galaxies in the range of absolute magnitudes from ?25m to ?11m. The local luminosity density within 8 Mpc is 6.8 × 108L Mpc?3, a factor of 1.5 ± 0.1 higher than the global mean K-band luminosity density. We determined the ratios of the virial mass to the K-band luminosity for nearby groups and clusters of galaxies. In the luminosity range from 5 × 1010 to 2 × 1013L, the dependence log(M/LK) ∝ (0.27 ± 0.03) log LK with a dispersion of ~0.1 comparable to the measurement errors of the masses and luminosities of the systems of galaxies holds for the groups and clusters of galaxies. The ensemble-averaged ratio, 〈M/LK〉 ? (20–25) M/L, was found to be much smaller than the expected global ratio, (80–90)M/L, in the standard model with Ωm = 0.27. This discrepancy can be eliminated if the bulk of the dark matter in the Universe is not associated with galaxies and their systems.  相似文献   

15.
We have estimated the dark matter content in galaxy pairs and triplets selected from SDSS DR5 by a higher-order Voronoi tesseleration method. Specifically, the median mass-to-light ratios M vir/L are 12 M /L for isolated pairs, 44 M /L for isolated triplets, and 7 (8) M /L for compact pairs (triplets) with a characteristic distance between the galaxies of R < 50 (100) kpc. We show that the less isolated a system, the larger its mass-to-light ratio. This suggests that galaxy groups in a denser environment have a higher velocity dispersion.  相似文献   

16.
Infrared observations of the unique symbiotic system CH Cyg in 2003–2006 are presented. Analysis of the observations has shown that a fairly dense dust structure (a cloud or a shell) appeared on the line of sight in August–November 2006. The dust grains in the new shell are similar in optical properties to graphite ones and their sizes are mostly within the range 0.14–0.16 μm. The dust shell is optically thick and its optical depth at 2.2 μm is τ(2.2) ≈ 0.97. The dust shell mass is M d(06) ≈ 8 × 10−6 M and the rate of matter flow into the shell has reached ∼2 × 10−5 M yr−1. Original Russian Text ? O.G. Taranova, V.I. Shenavrin, 2007, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2007, Vol. 33, No. 8, pp. 598–603.  相似文献   

17.
Two quasars SDSS J010013.02+280225.8 and J030642.51+185315.8 with redshifts z = 6.30 and z = 5.363 were recently discovered. Their apparent magnitudes in the standard cosmological model give the luminosities of Lbol ~ 4.3 × 1014L and Lbol ~ 3.4 × 1014L. In the framework of modern concepts it is accepted that the energy release of quasars is provided by the accretion onto black holes with masses of 1.24 ± 0.19 × 1010M and 1.07 ± 0.27 × 1010M. As within the standard cosmological model the ages of these objects are about one billion years, this creates serious difficulties for the scenario of formation of such objects. Here we interpret the ultra-high luminosities of quasars as the effect of lensing of their radiation by the foreground globular clusters or dwarf galaxies.  相似文献   

18.
The evolution of a Population-I star with an initial mass M ZAMS = 60 M has been calculated. At the stage when a red giant turns into an early-type helium star, the vast bulk of the stellar mass is concentrated in a compact core surrounded by an extended envelope that is unstable with respect to radial oscillations. The range of effective temperatures within which the instability arises extends to T eff ? 105 K. For the models corresponding to the Wolf-Rayet evolutionary stage (5 × 104 K ≤ T eff ≤ 1.05 × 105 K), hydrodynamic calculations of self-exciting radial stellar pulsations have been performed. The pulsational instability develops in a time interval comparable to the dynamic timescale. Once the amplitude has ceased to grow, the pulsational motions are nonlinear traveling waves propagating from the core boundary to the stellar surface. The velocity amplitude of the outer layers is 500 km s?1 < ΔU < 103 km s?1, depending on the effective temperature. During the evolution of a helium star, the mean ratio of the maximum expansion velocity of the outer layers to the local escape velocity decreases and lies within the range 0.25 < U max/v esc < 0.6 for the models considered. The nonlinearity of the stellar pulsations is responsible for the increase in the mean radius \(\bar r\) of the Lagrangian layers compared to the equilibrium radius r eq. The effect of the increase in mean radius decreases with rising effective temperature from\(\bar r\)/r ~ 10 at T eff = 7 × 104 K to \(\bar r\)/r ≈ 2 at T eff = 105 K. The radial pulsation periods for the models considered lie within the range 0.1 day ≤ Π ≤ 1.6 day and the amplitude of the bolometric magnitude variations does not exceed 0 . m 2.  相似文献   

19.
Highly accurate W BV R photometric measurements of the eclipsing binary HP Aur were performed in 2002–2003 with the 48-cm AZT-14 reflector at the Tien-Shan High-Altitude Observatory to determine the rate of apsidal motion. A consistent system of physical and geometrical parameters of the components and the binary as a whole has been constructed for the first time by analyzing these new measurements together with other published data: we determined their radii (R1 = 1.05R, R2 = 0.82R) and luminosities (L1 = 1.10L, L2 = 0.46L), spectral types (G2V + G8V) and surface gravities (log g1 = 4.38, log g2 = 4.51), age (t = 9.5 × 109 yr), and the distance to the binary (d = 197 pc). We detected an ultraviolet excess in the spectra of both components, \(\Delta (W - B) \simeq - 0\mathop .\limits^m 25\), that is probably attributable to a metal deficiency in the atmospheres of these stars. In this system of two solar-type stars, we found a third body with the mass M3 sin i 3 3 = 0.17M that revolved with the period P3 = 13.7 yr around the eclipsing binary in a highly eccentric elliptical orbit: e3 = 0.70 and A3 sin i3 ? 7 AU. The orbit of the eclipsing binary itself was shown to be also elliptical, but with a low eccentricity (e = 0.0025(5)), while apsidal motion with a period Uobs > 80 yr was observed at a theoretically expected period Uth ≈ 92 yr. At least 20 to 30 more years of photoelectric measurements of this star will be required to reliably determine Uobs.  相似文献   

20.
The system of subdwarfs G89-14 is one of the most metal-poor multiple stars with an atmospheric metal abundance [m/H] = ?1.9. Speckle interferometry at the 6-m BTA telescope has revealed that G89-14 consists of four components. Measurements of the magnitude difference between the components and published data have allowed their masses to be estimated: M A ≈ 0.67 M , M B ≈ 0.24M ,M C ≈ 0.33M , andM D ≈ 0.22M . The ratio of the orbital periods of the subsystems has been obtained, 0.52 yr: 3000 yr: 650 000 yr (1: 5769: 1 250 000), indicative of a high degree of hierarchy o fG89-14 and its internal dynamical stability. The calculated Galactic orbital elements and the low metallicity of the quadruple system suggest that it belongs to the Galactic halo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号