首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Digital techniques for the correction of signal distortions that arise in planar laser-induced fluorescence (PLIF) measurements (by PC-based video digitizing systems) of jets and plumes and the production of flow statistics in both time and space are reviewed. The entire concentration field is repeatedly imaged in s intervals over hundreds of thousands a points in a plane. By the recognition of signal distortion sources and the employment of corrections, a clearer picture of tracer concentrations may be realized.Fluorescence studies are made with a planar sheet of laser light 430 mm tall and 1.5 mm thick. The fluorescence excitation produced from trace concentrations of Rhodamine 6G is used to visualize and measure the propagation of a jet or plume in a density stratified laboratory tank. The emitted light is collected by a CCD camera in a 512 × 480 pixel format over a 940 × 715 mm field of view. The captured images are corrected for transverse laser sheet intensity distribution; laser beam attenuation; refraction; lens vignette; time varying and spatial noise; digitization aspect ratio; camera response. The measurement and methods of correction are discussed in detail. The resulting image data can then be used to collect tracer concentration statistics for jets and plumes. Instantaneous (i.e. over of a second intervals), average, maximum, minimum, standard deviation, and coefficient of variation are given as introductory examples of image statistics realizable for a buoyant jet.  相似文献   

2.
Telecommunication laser diodes emitting near 1.39 m and 1.65 m in combination with direct-differential absorption spectroscopy are efficient tools to monitor in situ stratospheric H2O andCH4 with a good precision error (a few percents), a high temporal resolution (ranging from 10 ms to 1 s), a large dynamic range in the concentration measurements (four orders of magnitude) and a high selectivity in the analyte species. To illustrate the capability of laser probing technique, we report balloonborne H2Oand CH4 simultaneous measurements obtained on October 2001 atmidlatitudes (43° N). The H2O vertical profile achieved with the lasersensor in the lower stratosphere is compared with the H2O data yielded by a balloonborne frost-point hygrometer. The total hydrogen mixing ratio in the lower stratosphere, 2[CH4] + [H2O], appears to beconstant at 7.5 ± 0.1 ppmv. Nevertheless, an unexpected largedehydration of 0.5 ppmv was detected by both the laser sensor and thehygrometer between 16 km and 23 km. We suspect the occurrence of a tropicalair intrusion into mid-latitudes. We support this interpretation using a high-resolution advection model for potential vorticity.  相似文献   

3.
搭建了一套以中心输出波长为808.5 nm的半导体激光端面泵浦Nd:YVO4激光晶体产生1 064 nm红外激光,然后以腔内KTP晶体倍频的方法将红外激光倍频为532 nm绿光激光的固体激光实验系统,研究了808.5 nm的泵浦半导体激光的输出功率与注入电流的关系及与532 nm绿光输出功率的关系,以及KTP倍频晶体的相位匹角、泵浦光的聚焦位置和固体激光器的腔长等因素对532 nm绿光输出功率的影响.实验结果表明:提高泵浦半导体激光的泵浦功率、缩短固体激光器的腔长、将泵浦光聚焦到Nd:YVO4晶体内部以及正确选择KTP晶体的相位匹配角能够提高532 nm绿光的输出功率.  相似文献   

4.
A Laser Induced Fluorescence (LIF) instrument has been developed to detect iodine monoxide (IO) radicals in the atmosphere. An all solid-state Nd:YAG pumped Ti:Sapphire laser operating at approximately 445 nm was used to excite the (2,0) band of the IO A2Π3/2 ← X2Π3/2 electronic transition, with off-resonance fluorescence in the (2,5) band detected at 521 nm. The sensitivity of the instrument was determined by calibration. IO (between 10 and 150 pptV) was generated following the 184.9 nm photolysis of N2O/CF3I/N2 mixtures with O3 actinometry used to determine the photolysis flux. The detection limit was determined to be 0.3 pptV for a 300 s integration period, with an uncertainty of 23% (1σ). The instrument was deployed in August/September 2006 during the RHaMBLe (Reactive Halogens in the Marine Boundary Layer) campaign in Roscoff, France. Located on a small jetty, a few metres from the water’s edge at high tide, the instrument measured significant levels of IO on 11 days, with a maximum of 27.6 ± 3.2 pptV observed on one day (averaged over 10 s) representing the highest IO mixing ratio recorded in the marine boundary layer to date. IO displayed a clear diurnal profile with a maximum at low tide during the daytime. These results represent the first point measurements of IO in the atmosphere by LIF.  相似文献   

5.
Tropospheric hydroxyl radical (OH) concentrations were measured by laser-induced fluorescence (LIF) during the POPCORN field campaign in August 1994 at a rural site in the North East of Germany. Ambient air spectra were recorded by tuning the laser wavelength over a spectral region covering the Q11(3), Q21(3), and P11(1) rotational transitions of the (0-0) band in the A-X system of OH around 308 nm. The observed spectra clearly identify the OH radical in the atmosphere. Besides the OH absorption lines there was no sign of any other narrow-band spectral structure nearby demonstrating the high specificity of the method. For OH measurements with a typical time resolution of 60–100 seconds per data point the laser wavelength was tuned repetitively over small spectral intervals covering the peak position of the P11(1) OH-line and background positions. A total of 2300 measurements were recorded including diurnal cycles of OH with more than 300 data points. The OH as well as the LIF background signal data will be presented. In a first analysis the background signal will be characterized and the correlation between OH and the ozone photolysis frequency will be derived.  相似文献   

6.
 Detection of an enhanced greenhouse effect on climate depends on recognition of a signal of change amidst the combined noise of climatic variability and uncertainty in the nature of the signal (functional response to changing CO2). Using two different GCMs (one with a coupled dynamic upper ocean) and an ensemble of 20 equilibrium experiments with CO2 ranging from 100 to 3500 ppm, we find that that two measures of signal-to-noise (S/N) for the response of surface temperature to CO2 forcing are larger over tropical and subtropical oceans than over low-latitude landmasses and larger than at higher latitudes generally. One S/N measure has the noise based solely on inherent model variability, while the other S/N measure includes both this variability and a measure of the uncertainty in the functional nature of the signal. Although the experiments were not for transient forcing and sulphate aerosols and other potentially important forcings (e.g., ozone or solar variability) were not considered, the results suggest that the effects of enhanced greenhouse climate may be detected more readily in surface temperatures from low-latitude oceanic regions than from global or zonal temperature averages. Received: 27 June 1995/Accepted: 28 October 1996  相似文献   

7.
Summary A novel multi-timescale analysis method, Empirical Mode Decomposition (EMD), is used to diagnose the variation of the annual mean temperature data of the global, Northern Hemisphere (NH) and China from 1881 to 2002. The results show that: (1) Temperature can be completely decomposed into four timescales quasi-periodic oscillations including an ENSO-like mode, a 6–8-year signal, a 20-year signal and a 60-year signal, as well as a trend. With each contributing ration of the quasi-periodicity discussed, the trend and the 60-year timescale oscillation of temperature variation are the most prominent. (2) It has been noticed that whether on century-scale or 60-year scales, the global temperature tends to descend in the coming 20 years. (3) On quasi 60-year timescale, temperature abrupt changes in China precede those in the global and NH, which provides a denotation for global climate changes. Signs also show a drop in temperature in China on century scale in the next 20 years. (4) The dominant contribution of CO2 concentration to global temperature variation is the trend. However, its influence weight on global temperature variation accounts for no more than 40.19%, smaller than those of the natural climate changes on the rest four timescales. Despite the increasing trend in atmospheric CO2 concentration, the patterns of 20-year and 60-year oscillation of global temperature are all in falling. Therefore, if CO2 concentration remains constant at present, the CO2 greenhouse effect will be deficient in counterchecking the natural cooling of global climate in the following 20 years. Even though the CO2 greenhouse effect on global climate change is unsuspicious, it could have been excessively exaggerated. It is high time to re-consider the trend of global climate changes.  相似文献   

8.
An instrument for measuringtropospheric OH/HO2 radicals by laser-inducedfluorescence developed in our laboratory is presentedin detail. It is based on FAGE (fluorescence assay bygas expansion) technique and OH is both excited anddetected at 308 nm corresponding to its A-X(0,0) band.The alignment of the laser beam, the design of thesample gas inlet, and the devices for the fluorescencedetection are optimized so as to reduce the backgroundsignal while keeping the OH sensitivity as high aspossible. A thermalized position of the expanding gasbeam is probed in our system and we did not observe asevere decrease of the HOx sensitivities under humidconditions. An optical fiber is used for deliveringthe laser light to the fluorescence detection cellmounted outside at a high position. Thus the laserbeam alignment is by far simplified and is made highlyreproducible, once settled properly. For thecalibration, two methods are employed: a system withlaser absorption measurements of OH and a system ofsimultaneous photolysis of H2O and O2. Thecalibration factors are compared well within thecombined uncertainty. Using the latter system, theconversion efficiency of HO2 to OH by NO additionis measured to be around 90%. The detection limitsfor OH and HO2 (S/N = 2) are estimated to be3.3 × 106 and 3.6 × 106cm–3 at noon,respectively, with an integration time of 1 min. Theresults of test observations at our institute are alsopresented.  相似文献   

9.
In the present study, three wavelet basis functions (Mexican-hat, Morlet, and Wave) were used to analyze atmospheric turbulence data obtained from an eddy covariance system in order to determine effect of six meteorological elements (three-dimensional wind speed, temperature, and CO2 and H2O concentrations) on the time scale of coherent structures. First, we used the degree of correlation between original and reconstructed waveforms to test the three wavelets’ performance when determining the time scale of coherent structures. The Wave wavelet’s reconstructed coherent structure signal best matched the original signal; thus, it was used for further analysis of the time scale, number, and time cover of the meteorological elements. We found similar results for all elements, though there was some internal variation, suggesting that coherent structures are not inherently dependent on these elements. Our results provide a basis for proper coherent structure detection in atmospheric turbulence and improve the understanding of similarities and differences between coherent structure characteristics of different meteorological elements, which is helpful for further research into atmospheric turbulence and boundary layers.  相似文献   

10.
A multi-layer deposited ice film was prepared through water vapor deposition on a Ni plate in a vacuum chamber at 90 K, and was used as it was or after annealing at 140 K. NO2 was adsorbed as N2O4 approximately 90 K on the ice film prepared as above, and irradiated by 193 nm excimer laser light. The time-of-flight (TOF) spectra of the desorbed species, i.e., NO2, NO, O2 and O, were measured by a quadrupole mass spectrometer. The photochemical process obeyed an one-photon process. The relative yields of the products and their TOF spectra were dependent on the preparation condition of the ice film and also varied with the continuation of the laser irradiation. From the ice film annealed at 140 K, NO2, NO and O2 were desorbed with an approximate ratio of 1:1:0.01. From the non-annealed film, the relative yield of NO2 was much smaller than that of NO. The TOF spectrum of NO from the non-annealed ice film consisted of distinctly different two components corresponding to the 1700 and 100 K translational temperature, respectively. The fast component was lost when additional ice was deposited on the adsorbed N2O4. NO was supposed to be a predissociation product from the electronically excited NO2 prepared through the photodissociation of N2O4.  相似文献   

11.
雨滴谱包含了降雨的丰富信息,不仅能反映雨滴群的微物理特性,也能反映降雨类型、降雨强度等宏观特性,并且在雷达气象领域也有重要的价值。论文对2015和2016年度南京地区32次降雨过程的雨滴谱资料进行了处理、并对多种雨滴参数进行了详细的统计和分析,拟合了层状云降雨、对流云降雨以及积层混合云降雨的雨滴谱Gamma分布参数。另外,还基于雨滴谱数据拟合了雷达反射率因子Z与降雨强度R的Z-R关系,计算了差分反射率ZDR、相位常数KDP以及衰减参数,并利用衰减参数进行了C波段雷达回波的衰减订正试验。结果表明:(1)层状云降雨的各微物理参数比较稳定,积雨云的变化剧烈;层云降雨和积层混合云降雨的中雨滴、积雨云降雨的大雨滴对雷达反射率因子的贡献最大。(2)积雨云降雨的滴谱最宽,层状云降雨的最窄。(3)利用依据雨滴谱数据拟合的三类降雨Z-R关系,可以一定程度地提高雷达估测降雨的精度。(4)利用基于雨滴谱数据拟合的衰减系数,有效地进行了C波段双偏振雷达回波强度的衰减订正,体现了统计参数和拟合参数准确性。  相似文献   

12.
Very few studies have conducted long-term observations of methane (CH4) flux over forest canopies. In this study, we continuously measured CH4 fluxes over an evergreen coniferous (Japanese cypress) forest canopy throughout 1?year, using a micrometeorological relaxed eddy accumulation (REA) system with tuneable diode laser spectroscopy (TDLS) detection. The Japanese cypress forest, which is a common forest type in warm-temperate Asian monsoon regions with a wet summer, switched seasonally between a sink and source of CH4 probably because of competition by methanogens and methanotrophs, which are both influenced by soil conditions (e.g., soil temperature and soil moisture). At hourly to daily timescales, the CH4 fluxes were sensitive to rainfall, probably because CH4 emission increased and/or absorption decreased during and after rainfall. The observed canopy-scale fluxes showed complex behaviours beyond those expected from previous plot-scale measurements and the CH4 fluxes changed from sink to source and vice versa.  相似文献   

13.
Towards the detection and attribution of an anthropogenic effect on climate   总被引:1,自引:0,他引:1  
It has been hypothesized recently that regional-scale cooling caused by anthropogenic sulfate aerosols may be partially obscuring a warming signal associated with changes in greenhouse gas concentrations. Here we use results from model experiments in which sulfate and carbon dioxide have been varied individually and in combination in order to test this hypothesis. We use centered [R (t)] and uncentered [C (t)] pattern similarity statistics to compare observed time-evolving surface temperature change patterns with the model-predicted equilibrium signal patterns. We show that in most cases, the C (t) statistic reduces to a measure of observed global-mean temperature changes, and is of limited use in attributing observed climate changes to a specific causal mechanism. We therefore focus on R (t), which is a more useful statistic for discriminating between forcing mechanisms with different pattern signatures but similar rates of global mean change. Our results indicate that over the last 50 years, the summer (JJA) and fall (SON) observed patterns of near-surface temperature change show increasing similarity to the model-simulated response to combined sulfate aerosol/CO2 forcing. At least some of this increasing spatial congruence occurs in areas where the real world has cooled. To assess the significance of the most recent trends in R (t) and C (t), we use data from multi-century control integrations performed with two different coupled atmosphere-ocean models, which provide information on the statistical behavior of 'unforced' trends in the pattern correlation statistics. For the combined sulfate aerosol/CO2 experiment, the 50-year R (t) trends for the JJA and SON signals are highly significant. Results are robust in that they do not depend on the choice of control run used to estimate natural variability noise properties. The R (t) trends for the CO2-only signal are not significant in any season. C (t) trends for signals from both the CO2-only and combined forcing experiments are highly significant in all seasons and for all trend lengths (except for trends over the last 10 years), indicating large global-mean changes relative to the two natural variability estimates used here. The caveats regarding the signals and natural variability noise which form the basis of this study are numerous. Nevertheless, we have provided first evidence that both the largest-scale (global-mean) and smaller-scale (spatial anomalies about the global mean) components of a combined CO2/anthropogenic sulfate aerosol signal are identifiable in the observed near-surface air temperature data. If the coupled-model noise estimates used here are realistic, we can be highly confident that the anthropogenic signal that we have identified is distinctly different from internally generated natural variability noise. The fact that we have been able to detect the detailed spatial signature in response to combined CO2 and sulfate aerosol forcing, but not in response to CO2 forcing alone, suggests that some of the regional-scale background noise (against which we were trying to detect a CO2-only signal) is in fact part of the signal of a sulfate aerosol effect on climate. The large effect of sulfate aerosols found in this study demonstrates the importance of their inclusion in experiments designed to simulate past and future climate change. Received: 10 November 1994 / Accepted: 19 July 1995  相似文献   

14.
Methods of calibrating infrared CO2 analysers for sensitivity to CO2 and water vapour are described. Equations to correct eddy covariance CO2 flux measurements are presented for: (i) analyser cross-sensitivity to water vapour and the effects of density fluctuations arising from atmospheric fluxes of water vapour and sensible heat, (ii) flux losses caused by signal processing and limited instrument frequency response for open- and closed-path CO2 analysers, and (iii) flux losses resulting from damping of concentration fluctuations in a tube used to sample air for closed-path CO2 analysers. Examples of flux corrections required for typical instruments are presented.  相似文献   

15.
 The use of pattern correlations to compare observed temperature changes with predicted anthropogenic effects has greatly increased our confidence in the reality of these effects. Here we use synthetic observed data to determine the expected behavior of the pattern correlation statistic, R(t), and hence clarify some results obtained in previous studies. We show that, for the specific case considered here (near-surface temperature changes), even with a perfectly-known signal, expected values of R(t) currently should be only of order 0.3–0.5, as observed; that R(t) may show markedly non-linear variations in time; that the CO2-alone signal pattern should be difficult to detect today primarily because of data coverage deficiencies; and why the signal due to combined CO2-aerosol forcing is easier to detect than either the CO2-alone or aerosol-alone signals. Finally, we show that little is to be gained at present by searching for a time-dependent signal compared with a representative constant signal pattern. Received: 24 June 1996/Revised: 3 March 1998  相似文献   

16.
17.
A high resolution tunable diode laser absorption spectrometer (TDLAS) was used to measure the broadening effect of water vapor and other gases (dry air, nitrogen, oxygen, hydrogen and helium) on three methane lines in the v4 fundamental. The effects on methane eddy correlation flux measurements amount to a few percent for the least broadened line for expected H2O fluxes, to 10% for the most broadened line for higher H2O and lower CH4 fluxes likely to be encountered. The broadening coefficients of methane measured for air, N2, O2, and He are in good agreement with recently published values.  相似文献   

18.
Accurate OH and HO2 (collectively called HOx) measurements by laser-induced fluorescence (LIF) may be contaminated by spurious signals from interfering atmospheric chemicals or from the instrument itself. Interference tests must be conducted to ensure that observed OH signal originates solely from ambient OH and is not due to instrument artifacts. Several tests were performed on the Penn State LIF HOx instrument, both in the laboratory and in the field. Theseincluded measurements of the instrument's zero signal by using either zero air or perfluoropropylene to remove OH, examination of spectral interferences from naphthalene, sulfur dioxide, and formaldehyde, and tests of interferences by addition of suspected interfering atmospheric chemicals, including ozone, hydrogen peroxide, nitrous acid, formaldehyde, nitric acid, acetone, and organic peroxy radicals (RO2). All tests lacked evidence ofsignificant interferences for measurements in the atmosphere, including highly polluted urban environments.  相似文献   

19.
Five aromatic hydrocarbons – benzene, toluene, ethylbenzene, p-xylene and 1,2,4-trimethylbenzene – were selected to investigate the laser desorption/ionization mass spectra of secondary organic aerosols (SOA) resulting from OH-initiated photooxidation of aromatic compounds. The experiments were conducted by irradiating aromatic hydrocarbon/CH3ONO/NO X mixtures in a home-made smog chamber. The aerosol time-of-flight mass spectrometer (ATOFMS) was used to measure the aerodynamic size and chemical composition of individual secondary organic aerosol particles in real-time. Experimental results showed that aerosol created by aromatics photooxidation is predominantly in the form of fine particles, which have diameters less than 2.5 μm (i.e. PM2.5), and different aromatic hydrocarbons SOA mass spectra have eight same positive laser desorption/ionization mass spectra peaks: m/z = 18, 29, 43, 44, 46, 57, 67, 77. These mass spectra peaks may come from the fragment ions of the SOA products: oxo-carboxylic acids, aldehydes and ketones, nitrogenated organic compounds, furanoid and aromatic compounds. The possible reaction mechanisms leading to these products were also discussed.  相似文献   

20.
The absorption properties of NO in 5.2 μm band and NO2 in 6.2 μm band are measured for some definite wavelengths by using line-tunable CO laser and long-path absorption cell. The absorption coefficients for 49 CO laser wavelengths are given and variations of absorption withpartial and total pressures are analysed. Fur-thermore, the experimental errors and the interference of water vapour with the absorption at definite laser lines are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号