首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the results from a 6-yr, multi-epoch very long baseline interferometry monitoring of the Seyfert galaxy NGC 3079. We have observed NGC 3079 during eight epochs between 1999 and 2005 predominantly at 5 GHz, but covering the frequency range of 1.7 to 22 GHz. Using our data and observations going back to 1985, we find that the separation of two of the three visible nuclear radio components underwent two decelerations. At the time of these decelerations, the flux density of one of the components increased by factors of 5 and 2, respectively. We interpret these events as a radio jet component undergoing compression, possibly as a result of a collision with interstellar medium material. This interpretation strongly supports the existence of jets surrounded by a clumpy medium of dense clouds within the first few parsec from the central engine in NGC 3079. Moreover, based on recently published simulations of jet interactions with clumpy media, this scenario is able to explain the nature of two additional regions of ageing synchrotron material detected at the lower frequencies as by-products of such interactions, and also the origin of the kpc-scale super-bubble observed in NGC 3079 as the result of the spread of the momentum of the jets impeded from propagating freely. The generalization of this scenario provides an explanation why jets in Seyfert galaxies are not able to propagate to scales of kpc as do jets in radio-loud AGN.  相似文献   

2.
Observations of a rare long-duration solar event of GOES class X1.2 from 26?October 2003 are presented. This event showed a pronounced burst of hard X-ray and microwave emission, which was extremely delayed (>?60?min) with respect to the main impulsive phase and did not have any significant response visible in soft X-ray emission. We refer to this phenomenon as a ??burst-on-tail??. Based on TRACE observations of the growing flare arcade and some simplified estimation, we explain why a reaction of active region plasma to accelerated electrons may change drastically over time. We suggest that, during the ??burst-on-tail??, non-thermal electrons were injected into magnetic loops of larger spatial scale than during the impulsive phase bursts, thus resulting in much smaller values of plasma temperature and emission measure in their coronal volume, and hence little soft X-ray flux. The?nature of the long gap between the main impulsive phase and the ??burst-on-tail?? is, however, still an open question.  相似文献   

3.
We present an analysis of high cadence observations of solar jets observed in the Extreme Ultraviolet (EUV), at 304 Å, with the Atmospheric Imaging Assembly instrument aboard the Solar Dynamics Observatory (SDO). The jets in our sample lie very close to the solar limb to minimize projection effects. Two of the events show clear helical patterns during ejection. We also find that some of the jets are recurrent and that most of them cannot overcome solar gravity. We investigate the temporal evolution of the jets by measuring the height of their leading edge as a function of time. By fitting the resulting height–time diagrams, we derive the magnitude of their initial ejection speed and plasma acceleration by assuming ballistic motion. Moreover, we calculate the upward acceleration of the jets based on the dynamical velocity of the plasma, without assuming a ballistic motion. In both models, the acceleration profiles suggest the influence of forces other than gravity. In particular, we find indications of an upwards driving force which weakens the decelerating effect of the solar gravitational field along the motion of the jet. This force is larger in the dynamical model, which indicates that the ballistic approximation does not properly determine the rising motion of the plasma jets.  相似文献   

4.
D.E. Innes  G. Tóth 《Solar physics》1999,185(1):127-141
Small-scale explosive events or microflares occur throughout the chromospheric network of the Sun. They are seen as sudden bursts of highly Doppler-shifted spectral lines of ions formed at temperatures in the range 2×104–5×105 K. They tend to occur near regions of cancelling photospheric magnetic fields and are thought to be directly associated with magnetic field reconnection. Recent observations have revealed that they have a bi-directional jet structure reminiscent of Petschek reconnection. In this paper compressible MHD simulations of the evolution of a current sheet to a steady Petschek, jet-like configuration are computed using the Versatile Advection Code. We obtain velocity profiles that can be compared with recent ultraviolet line-profile observations. By choosing initial conditions representative of magnetic loops in the solar corona and chromosphere, it is possible to explain the fact that jets flowing outward into the corona are more extended and appear before jets flowing towards the chromosphere. This model can reproduce the high Doppler-shifted components of the line profiles, but the brightening at low velocities, near the center of the bi-directional jet, cannot be explained by this simple MHD model.  相似文献   

5.
Solar coronal holes (CHs) are large regions of the corona magnetically open to interplanetary space. The nearly rigid north?–?south CH boundaries (CHBs) of equatorward extensions of polar CHs are maintained while the underlying photospheric fields rotate differentially, so interchange magnetic reconnection is presumed to be occurring continually at the CHBs. The time and size scales of the required reconnection events at CHBs have not been established from previous observations with soft X-ray images. We use TRACE 195 Å observations on 9 December 2000 of a long-lived equatorial extension of the negative-polarity north polar CH to look for changes of ??5 arcsec to >?20 arcsec at the western CHB. Brightenings and dimmings are observed on both short (≈?5 minutes) and long (≈?7 hours) time scales, but the CHB maintains its quasi-rigid location. The transient CHB changes do not appear associated with either magnetic field enhancements or the changes in those field enhancements observed in magnetograms from the Michelson Doppler Imager (MDI) on SOHO. In seven hours of TRACE observations we find no examples of the energetic jets similar to those observed to occur in magnetic reconnection in polar plumes. The lack of dramatic changes in the diffuse CHB implies that gradual magnetic reconnection occurs high in the corona with large (??10°) loops and/or weak coronal fields. We compare our results with recent observations of active regions at CHBs. We also discuss how the magnetic polarity symmetry surrounding quasi-rigid CHs implies an asymmetry in the interchange reconnection process and a possible asymmetry in the solar wind composition from the eastern and western CHB source regions.  相似文献   

6.
Pion condensates can help to explain a variety of physical properties owned by pulsars if they are present in their interiors. It has been noted that they offer, for example, an attractive alternative to understand glitches by improving former core-quake models. We discuss this scenario and show in this work some constraints on the properties of this type of matter arise from X-ray observations of the Vela pulsar performed by theEinstein Observatory. Further information on this subject will be soon obtained from improved facilities and we expect them to give further constraints to the viability of those models.  相似文献   

7.
We study the kinds of distorted radio structures likely to be produced by the combination of slingshot mechanism, galaxy rotation, and nonradial gas flows. Since all deviations from simple radial symmetry must in the slingshot scenario be produced by passive motion of the thermally confined synchrotron emitting plasma, the dynamics of the ambient medium together with the radial motion of the ejected black holes completely determine the overall structure and evolution of the radio lobes and jets. Numerical calculations show that many commonly observed basic morphological types result naturally from the assumed mechanism. In particular, very nonsymmetric, strongly-bent sources, small sources with Z-symmetry, and jets which are initially straight and then bend suddenly over large angles, are common. Passive bending may also became important in beam models, resulting in strong distortions of the jets and lobes.  相似文献   

8.
The role of collisions between extragalactic jets and dense clouds in determining the appearance of high-redshift radio galaxies is discussed and investigated through numerical hydrodynamic simulations in three dimensions. The code has the facility to track jet material separately from ambient material. This allows us to use simplifying assumptions to calculate synthetic radio images. The results indicate that the most powerful radio sources are likely to be observed during or shortly after an interaction, and that such interactions can explain both the radio structures and the spatial association between optical and radio light found in powerful radio galaxies. In some cases such a scenario may provide an alternative explanation of jet properties to mechanisms based on variations in the source or fluid-dynamical instabilities.This author is supported by a PPARC research studentship  相似文献   

9.
10.
New X-ray observations of the north polar region taken from the X-ray Telescope (XRT) of the Hinode spacecraft are used to analyze several time sequences showing small loop brightenings with a long ray above. We focus on the formation of the jet and discuss scenarios to explain the main features of the events: the relationship with the expected surface magnetism, the rapid and sudden radial motion, and possibly the heating, based on the assumption that the jet occurs above a null point of the coronal magnetic field. We conclude that 2-D reconnection models should be complemented in order to explain the observational details of these events and suggest that alternative scenarios may exist.  相似文献   

11.
Europa's low crater density suggests that geological activity has continued to the present epoch, leading to the possibility that current resurfacing events might be detectable. CCD observations were carried out with a ST-6 camera at the 0.5 m Mons Cassegrain telescope (Izaña Observatory, Tenerife,Canary Islands, Spain) during the night between 2–3 October 1999. Our images show a transient bright feature on the Galilean satellite. These images are analyzed here with the purpose of understanding the nature of the transient phenomena as it could be the result of explosive venting on the surface of the Jovian satellite. By comparison, we use NASA Infrared Telescope Facility images of two Io hot spots taken on12 October 1990. Although we mainly restrict our discussion on apossible eruptive nature of the observed spots, we also consider other alternative mechanisms able to produce bright events. In particular, an interaction between charged material being ejected from Europa and the Jovian magnetosphere cannot be entirely ruled out. If confirmed, this result would lend support for the existence of active resurfacing in Europa.  相似文献   

12.
Magnetic reconnection is thought to be a key process in most solar eruptions. Thanks to highresolution observations and simulations, the studied scale of the reconnection process has become smaller and smaller. Spectroscopic observations show that the reconnection site can be very small, which always exhibits a bright core and two extended wings with fast speeds, i.e., transition-region explosive events.In this paper, using the PLUTO code, we perform a 2-D magnetohydrodynamic simulation to investigate small-scale reconnection in double current sheets. Based on our simulation results, such as the line-of-sight velocity, number density and plasma temperature, we can synthesize the line profile of SiIV 1402.77? which is a well known emission line used to study transition-region explosive events on the Sun. The synthetic line profile of Si IV 1402.77? is complex with a bright core and two broad wings which can extend to nearly 200 km s-1. Our simulation results suggest that the transition-region explosive events on the Sun are produced by plasmoid instability during small-scale magnetic reconnection.  相似文献   

13.
We investigate the solar flare occurrence rate and daily flare probability in terms of the sunspot classification supplemented with sunspot area and its changes. For this we use the NOAA active region data and GOES solar flare data for 15 years (from January 1996 to December 2010). We consider the most flare-productive 11 sunspot classes in the McIntosh sunspot group classification. Sunspot area and its changes can be a proxy of magnetic flux and its emergence/cancellation, respectively. We classify each sunspot group into two sub-groups by its area: ??Large?? and ??Small??. In addition, for each group, we classify it into three sub-groups according to sunspot area changes: ??Decrease??, ??Steady??, and ??Increase??. As a result, in the case of compact groups, their flare occurrence rates and daily flare probabilities noticeably increase with sunspot group area. We also find that the flare occurrence rates and daily flare probabilities for the ??Increase?? sub-groups are noticeably higher than those for the other sub-groups. In case of the (M+X)-class flares in the ??Dkc?? group, the flare occurrence rate of the ??Increase?? sub-group is three times higher than that of the ??Steady?? sub-group. The mean flare occurrence rates and flare probabilities for all sunspot groups increase with the following order: ??Decrease??, ??Steady??, and ??Increase??. Our results statistically demonstrate that magnetic flux and its emergence enhance the occurrence of major solar flares.  相似文献   

14.
The most luminous Supernova SN2006gy (more than 100 times brighter than a typical supernova) has been a challenge to explain by standard models. For example, pair-instability supernovae which are luminous enough seem to have too slow a rise, and core-collapse supernovae do not seem to be luminous enough. We present an alternative scenario involving a Quark Nova (an explosive transition of the newly born neutron star to a quark star) in which a second explosion (delayed) occurs inside the ejecta of a normal supernova. The reheated supernova ejecta can radiate at higher levels for longer periods of time primarily due to reduced adiabatic-expansion losses, unlike the standard supernova case. We find an encouraging match between the resulting light curve and that observed in the case of SN2006gy suggesting that we might have at hand the first ever signature of a Quark Nova. Successful application of our model to SN2005gj and SN2005ap is also presented.  相似文献   

15.
Comparing the properties AGN and Herbig-Haro jets can be a useful exercise for understanding the physical mechanisms at work in collimated outflows that propagate in such different environments. In the case of Herbig-Haro jets, the presence of emission lines in the spectra and the continuous evolution of the observation techniques greatly favor our knowledge of the physical parameters of the jets instead, for AGN jets, the process of constraining the jet parameters is hampered by the nature of the emission from these objects that is non-thermal. I will discuss how one cannot directly constrain the basic parameters of extragalactic jets by observations but must treat and interpret the data either by statistical means or by comparing observed and simulated morphologies in order to gain some indications on the values of these parameters.  相似文献   

16.
Jet physics is again flourishing as a result of Chandra’s ability to resolve high-energy emission from the radio-emitting structures of active galaxies and separate it from the X-ray-emitting thermal environments of the jets. These enhanced capabilities have coincided with an increasing interest in the link between the growth of super-massive black holes and galaxies, and an appreciation of the likely importance of jets in feedback processes. I review the progress that has been made using Chandra and XMM-Newton observations of jets and the medium in which they propagate, addressing several important questions, including: Are the radio structures in a state of minimum energy? Do powerful large-scale jets have fast spinal speeds? What keeps jets collimated? Where and how does particle acceleration occur? What is jet plasma made of? What does X-ray emission tell us about the dynamics and energetics of radio plasma/gas interactions? Is a jet’s fate determined by the central engine?  相似文献   

17.
自从人们获得河外射电源的第一个结构图像以来,30多年时间已经过去了。在这段时间的后半期,人们对许多源中的喷流状结构作了大量研究。目前,我们正在分析所获得的有关喷流的第一代结果。这包括高分辨率观测,数值模拟和理论研究等诸方面的成就。在本文 详细地讨论河外射电源中的喷流。  相似文献   

18.
Since their discovery 20 year ago, transition region bright points have never been observed spectroscopically. Bright point properties have not been compared with similar transition region and coronal structures. In this work we have investigated three transient quiet Sun brightenings including a transition region bright point (TR BP), a coronal bright point (CBP) and a blinker. We use time-series observations of the extreme-ultraviolet emission lines of a wide range of temperature T (logT=5.3?–?6.4) from the EUV Imaging Spectrometer (EIS) onboard the Hinode satellite. We present the EIS temperature maps and Doppler maps, which are compared with magnetograms from the Michelson Doppler Imager (MDI) onboard the SOHO satellite. Doppler velocities of the TR BP and blinker are ≤?25 km?s?1, which is typical of transient TR phenomena. The Doppler velocities of the CBP were found to be ≤?20 km?s?1 with exception of those measured at logT=6.2 where a distinct bi-directional jet is observed. From an EM loci analysis we find evidence of single and double isothermal components in the TR BP and CBP, respectively. TR BP and CBP loci curves are characterized by broad distributions suggesting the existence of unresolved structure. By comparing and contrasting the physical characteristics of the events we find that the BP phenomena are an indication of multi-scaled self-similarity, given the similarities in both their underlying magnetic field configuration and evolution in relation to EUV flux changes. In contrast, the blinker phenomena and the TR BP are sufficiently dissimilar in their observed properties as to constitute different event classes. Our work is an indication that the measurement of similar characteristics across multiple event types holds class-predictive power, and is a significant step towards automated solar atmospheric multi-class classification of unresolved transient EUV sources. Finally, the analysis performed here establishes a connection between solar quiet region CBPs and jets.  相似文献   

19.
The Galactic radio-emitting X-ray binary Cygnus X-3 is known to be a source of large-scale radio jets associated with periods of intense radio flaring. These jets have been found to have an expansion velocity of ∼0.3 c and are believed (on kinematic grounds) to lie close to the plane of the sky. We present new observations of Cygnus X-3 using the VLBA at 15 GHz. These observations, which included the detection of two small flares, show an additional kind of behaviour with apparent superluminal expansion along both major and minor axes. Evidence for superluminal activity has been found in a number of X-ray binary systems such as GRS 1915+105 and GRO J1655−40 with their superluminal radio jets. Apparently similar morphologies of the Galactic and extragalactic jet sources have led to the X-ray binaries being described as 'micro-quasars'. The superluminal expansion seen in our results appears to be different in nature from these other two sources, and a number of mechanisms are presented and discussed.  相似文献   

20.
The mechanisms for the formation of X-ray lines in the spectrum of SS 433 are investigated by taking into account the radiative transfer inside the jets. The results ofMonte Carlo numerical simulations are presented. The effect of a decrease in line intensity due to scattering inside the jet turns out to be pronounced, but it does not exceed 60% in magnitude on the entire grid of parameters. The line broadening due to scattering, nutational motion, and the contribution of satellites can lead to overestimates of the jet opening angle ?? from the line widths in Chandra X-ray observations. The fine structure of the lines turns out to be very sensitive to the scattering effects. This makes its investigation by planned X-ray observatories equipped with high-resolution spectrometers (primarily Astro-H) a powerful tool for diagnosing the parameters of the jets in SS 433.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号